Обыкновенные дифференциальные уравнения, Арнольд В.И., 2000


Обыкновенные дифференциальные уравнения, Арнольд В.И., 2000.

   Отличается от имеющихся учебных руководств по обыкновенным дифференциальным уравнениям большей, чем это обычно принято, связью с приложениями, в особенности с механикой, и более геометрическим, бескоординатным изложением. В соответствии с этим в книге мало выкладок, но много понятий, необычных для курса дифференциальных уравнений (фазовые потоки, однопараметрические группы, диффеоморфизмы, касательные пространства и расслоения) и примеров из механики (например, исследование фазовых портретов консервативных систем с одной степенью свободы, теория малых колебаний, параметрический резонанс).
Для студентов и аспирантов механико-математических факультетов университетов и ВУЗов с расширенной программой по математике, но будет интересна и специалистам в области математики и ее приложений.

Обыкновенные дифференциальные уравнения, Арнольд В.И., 2000

   Первые две главы книги сильно переработаны и значительно расширены. Добавлены разделы об элементарных методах интегрирования (о линейных однородных и неоднородных уравнениях первого порядка, об однородных и квазиоднородных уравнениях), о линейных и квазилинейных уравнениях с частными производными первого порядка, об уравнениях, неразрешенных относительно производных, и о теоремах Штурма о нулях линейных уравнений второго порядка. Таким образом, в новое издание книги включены все вопросы действующей программы по теории обыкновенных дифференциальных уравнений.
Излагая специальные приемы интегрирования, автор старался всюду выявлять геометрическую сущность разбираемых методов и показывать, как эти методы работают в приложениях, особенно в механике. Так, для решения линейного неоднородного уравнения вводится б-функция и вычисляется запаздывающая функция Грина, квазиоднородные уравнения приводят к теории подобия и закону всемирного тяготения, а теорема о дифференцируемости решения по начальным условиям — к исследованию относительного движения космических тел на близких орбитах.

Оглавление
ГЛАВА I. Основные понятия

§ 1. Фазовые пространства
§ 2. Векторные поля на прямой
§ 3. Линейные уравнения
§ 4. Фазовые потоки
§ 5. Действие диффеоморфизмов на векторные поля и на поля направлений
§ 6. Симметрии
ГЛАВА II. Основные теоремы
§ 7. Теоремы о выпрямлении
§ 8. Применения к уравнениям выше первого порядка
§ 9. Фазовые кривые автономной системы
§ 10. Производная по направлению векторного поля и первые интегралы
§ 11. Линейные и квазилинейные уравнения первого порядка с частными производными
§ 12. Консервативная система с одной степенью свободы
ГЛАВА III. Линейные системы
§ 13. Линейные задачи
§ 14. Показательная функция
§ 15. Свойства экспоненты
§ 16. Определитель экспоненты
§ 17. Практическое вычисление матрицы экспоненты — случай вещественных и различных собственных чисел
§ 18. Комплексификация и овеществление
§ 19. Линейное уравнение с комплексным фазовым пространством
§ 20. Комплексификация вещественного линейного уравнения
§ 21. Классификация особых точек линейных систем
§ 22. Топологическая классификация особых точек
§ 23. Устойчивость положений равновесия
§ 24. Случай чисто мнимых собственных чисел
§ 25. Случай кратных собственных чисел
§ 26. О квазимногочленах
§ 27. Линейные неавтономные уравнения
§ 28. Линейные уравнения с периодическими коэффициентами
§ 29. Вариация постоянных
ГЛАВА IV. Доказательства основных теорем
§ 30. Сжатые отображения
§ 31. Доказательство теорем существования и непрерывной зависимости от начальных условий
§ 32. Теорема о дифференцируемости
ГЛАВА V. Дифференциальные уравнения на многообразиях
§ 33. Дифференцируемые многообразия
§ 34. Касательное расслоение. Векторные поля на многообразии
§ 35. Фазовый поток, заданный векторным полем
§ 36. Индексы особых точек векторного поля
Программа экзамена
Образцы экзаменационных задач
Предметный указатель



Бесплатно скачать электронную книгу в удобном формате и читать:

Скачать книгу Обыкновенные дифференциальные уравнения, Арнольд В.И., 2000 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать




Скачать книгу Обыкновенные дифференциальные уравнения, Арнольд В.И., 2000 - Яндекс Народ Диск.

Скачать книгу Обыкновенные дифференциальные уравнения, Арнольд В.И., 2000 - depositfiles.
Дата публикации:





Теги: :: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 


Книги, учебники, обучение по разделам




Не нашёл? Найди:





2016-12-02 22:56:33