дифференциальные уравнения

Дифференциальные уравнения, практический курс, Самойленко А.М., Кривошея C.A., Перестюк H.A., 2006

Дифференциальные уравнения, практический курс, Самойленко А.М., Кривошея C.A., Перестюк H.A., 2006.

В пособии приведены краткие теоретические сведения и решения типовых задач по курсу обыкновенных дифференциальных уравнений. Даны также задачи для самостоятельного решения. Материал пособия позволяет выработать практические навыки в решении и исследовании дифференциальных уравнений, описывающих эволюционные процессы в различных областях естествознания.

Дифференциальные уравнения Практический курс, Самойленко А.М., Кривошея C.A., ПерестюкH.A., 2006.
Скачать и читать Дифференциальные уравнения, практический курс, Самойленко А.М., Кривошея C.A., Перестюк H.A., 2006
 

Обыкновенные дифференциальные уравнения, учебное пособие, Соколов В.А., 2014

Обыкновенные дифференциальные уравнения, учебное пособие, Соколов В.А., 2014.

Изложены основы теории обыкновенных дифференциальных уравнений. Приведены теоремы существования и единственности решения задачи Коши как для одного уравнения, так и для системы уравнений. Детально рассмотрены методы интегрирования различных типов уравнений, проиллюстрированные примерами и задачами. Также изложены основы теории устойчивости линейных дифференциальных систем. Отдельная глава посвящена линейным уравнениям в частных производных первого порядка. В приложения включены дополнительные сведения из матричного исчисления.
Содержание пособия соответствует учебной программе курса обыкновенных дифференциальных уравнений университетов.
Предназначено для студентов факультета прикладной математики и механики ПНИПУ. Также может быть полезно преподавателям, аспирантам и инженерам.
Обыкновенные дифференциальные уравнения, учебное пособие, Соколов В.А., 2014
Скачать и читать Обыкновенные дифференциальные уравнения, учебное пособие, Соколов В.А., 2014
 

Решение обыкновенных дифференциальных уравнений, Жесткие и дифференциально - алгебраические задачи, Хайрер Э., Ваннер Г., 1999

Решение обыкновенных дифференциальных уравнений, Жесткие и дифференциально - алгебраические задачи, Хайрер Э., Ваннер Г., 1999.

Книга известных швейцарских специалистов по численному анализу представляет собою второй том монографии. (Первый написан в соавторстве с Нёрсеттом. Он размещён на сайте режимщиков).
В монографии обсуждаются одно- и многошаговые, явные и неявные методы. Особое внимание уделяется жёстким и алгебро-дифференциальным уравнениям, обсуждаются многочисленные способы определения и обеспечения устойчивости и точности численных алгоритмов.

В книге можно найти описание практически всех методов, используемых при расчётах переходных процессов в электроэнергетике. Но с одной оговоркой: не стала предметом пристального обсуждения специфика методов решения очень больших систем уравнений (тысячи и десятки тысяч).



Решение обыкновенных дифференциальных уравнений, Жесткие и дифференциально - алгебраические задачи, Хайрер Э., Ваннер Г., 1999
Скачать и читать Решение обыкновенных дифференциальных уравнений, Жесткие и дифференциально - алгебраические задачи, Хайрер Э., Ваннер Г., 1999
 

Дифференциальные уравнения в частных производных, Масленникова В.Н., 1997

Дифференциальные уравнения в частных производных, Масленникова В.Н., 1997.

Учебник написан на основе лекций, читаемых автором на факультете физико-математических и естественных наук Российского университета дружбы народов.

В книге отражены следующие темы: выводы основных уравнений математической физики и гидродинамики; общая теория дифференциальных уравнений в частных производных, включая теорему Ковалевской, характеристики, классификацию уравнений и систем; даны основы теории обобщенных функций и пространств Соболева, с использованием которых изучены задачи Коши, краевые и начально-краевые задачи, в том числе задача на собственные значения для эллиптического уравнения второго порядка с переменными коэффициентами. Изложены приближенный метод Галеркина и свойства гармонических функций.



Дифференциальные уравнения в частных производных, Масленникова В.Н., 1997
Скачать и читать Дифференциальные уравнения в частных производных, Масленникова В.Н., 1997
 

Курс дифференциальных уравнений, Степанов В.В., 2004

Курс дифференциальных уравнений, Степанов В.В., 2004.

Предлагаемая вниманию читателя книга написана выдающимся отечественным математиком В.В. Степановым.

В ней представлено изложение всей теории дифференциальных уравнений в объеме университетской программы по высшей математике.



Курс дифференциальных уравнений, Степанов В.В., 2004
Скачать и читать Курс дифференциальных уравнений, Степанов В.В., 2004
 

Обыкновенные дифференциальные уравнения, Арнольд В.И., 2000

Обыкновенные дифференциальные уравнения, Арнольд В.И., 2000.

   Отличается от имеющихся учебных руководств по обыкновенным дифференциальным уравнениям большей, чем это обычно принято, связью с приложениями, в особенности с механикой, и более геометрическим, бескоординатным изложением. В соответствии с этим в книге мало выкладок, но много понятий, необычных для курса дифференциальных уравнений (фазовые потоки, однопараметрические группы, диффеоморфизмы, касательные пространства и расслоения) и примеров из механики (например, исследование фазовых портретов консервативных систем с одной степенью свободы, теория малых колебаний, параметрический резонанс).
Для студентов и аспирантов механико-математических факультетов университетов и ВУЗов с расширенной программой по математике, но будет интересна и специалистам в области математики и ее приложений.

Обыкновенные дифференциальные уравнения, Арнольд В.И., 2000

Скачать и читать Обыкновенные дифференциальные уравнения, Арнольд В.И., 2000
 

Дифференциальные уравнения - Примеры и задачи - Самойленко А.М., Кривошея С.А., Перестюк Н.А.

Название: Дифференциальные уравнения - Примеры и задачи. 1989.

Автор: Самойленко А.М., Кривошея С.А., Перестюк Н.А.

     В пособии приводятся краткие теоретические сведения и решения типовых задач по курсу обыкновенных дифференциальных уравнений. Имеются также задачи для самостоятельного решения. Материал пособия позволяет выработать практические навыки в решении и исследовании дифференциальных уравнений, описывающих эволюционные процессы в различных областях естествознания. Первое издание вышло в 1984 г. в издательстве «Вища школа».

Дифференциальные уравнения - Примеры и задачи - Самойленко А.М., Кривошея С.А., Перестюк Н.А.

Скачать и читать Дифференциальные уравнения - Примеры и задачи - Самойленко А.М., Кривошея С.А., Перестюк Н.А.
 

Справочник по обыкновенным дифференциальным уравнениям - Камке Э.

Название: Справочник по обыкновенным дифференциальным уравнениям.

Автор: Камке Э.

1971.

    «Справочник по обыкновенным дифференциальным уравнениям» известного немецкого математика Эриха Камке (1890 - 1961) представляет собой уникальное по охвату материала издание и занимает достойное место в мировой справочной математической литературе.
    Первое издание русского перевода этой книги появилось в 1951 году. Прошедшие с тех пор два десятилетия были периодом бурного развития вычислительной математики и вычислительной техники. Современные вычислительные средства позволяют быстро и с большой точностью решать разнообразные задачи, ранее казавшиеся слишком громоздкими. В частности, численные методы широко применяются в задачах, связанных с обыкновенными дифференциальными уравнениями. Тем не менее возможность записать общее решение того или иного дифференциального уравнения или системы в замкнутом виде имеет во многих случаях значительные преимущества. Поэтому обширный справочный материал, который собран в третьей части книги Э. Камке, - около 1650 уравнений с решениями - сохраняет большое значение и сейчас.

Справочник по обыкновенным дифференциальным уравнениям - Камке Э.

Скачать и читать Справочник по обыкновенным дифференциальным уравнениям - Камке Э.
 
Показана страница 1 из 2