Теорема Абеля в задачах и решениях, электронное издание, Алексеев В.Б., 2018

Теорема Абеля в задачах и решениях, электронное издание, Алексеев В.Б., 2018.

Из этой книги читатель узнает, как решать алгебраические уравнения 3-й и 4-й степени с одним неизвестным и почему для решения уравнений более высокой степени не существует общих формул (в радикалах). При этом он познакомится с двумя очень важными разделами современной математики — теорией групп и теорией функций комплексного переменного. Одна из основных целей данной книги—дать возможность читателю попробовать свои силы в математике. Для этого почти весь материал представлен в виде определений, примеров и большого числа задач, снабженных указаниями и решениями.
Книга рассчитана на широкий круг читателей, интересующихся серьезной математикой (начиная со школьников старших классов), и не предполагает у читателя каких-либо специальных предварительных знаний. Книга может служить также пособием для работы математического кружка.
Предыдущее издание книги вышло в 2001 г.

Теорема Абеля в задачах и решениях, электронное издание, Алексеев В.Б., 2018

Подстановки.

172. Сколько существует различных подстановок n-й степени? Определение. Группу всех подстановок n-й степени с обычной операцией умножения (т. е. композиции) подстановок*) называют симметрической группой степени n и обозначают Sn.
174. Любая подстановка единственным образом (с точностью до порядка сомножителей) разлагается в произведение нескольких независимых циклов. Доказать. Циклы вида (i, j), переставляющие только два элемента, называются транспозициями.
175. Доказать, что произвольный цикл можно разложить в произведение транспозиций (не обязательно независимых). Транспозиции (1, 2), (2, 3), ?, (n?1, n) называются элементарными транспозициями.
176. Доказать, что произвольная транспозиция представляется в виде произведения элементарных транспозиций. Из результатов задач 174–176 вытекает, что произвольная подстановка n-й степени может быть представлена как произведение элементарных транспозиций. Иными словами, верна следующая теорема.


ОГЛАВЛЕНИЕ.

Предисловие
Введение.
Глава I. Группы.
§ 1. Примеры.
§ 2. Группы преобразований.
§ 3. Группы.
§ 4. Циклические группы.
§ 5. Изоморфизм.
§ 6. Подгруппы.
§ 7. Прямое произведение.
§ 8. Смежные классы. Теорема Лагранжа.
§ 9. Внутренние автоморфизмы.
§ 10. Нормальные подгруппы.
§ 11. Фактор группы.
§ 12. Коммутант.
§ 13. Гомоморфизм.
§ 14. Разрешимые группы.
§ 15. Подстановки.
Глава II. Комплексные числа.
§ 1. Поля и многочлены.
§ 2. Поле комплексных чисел.
§ 3. Единственность поля комплексных чисел.
§ 4. Геометрические представления комплексных чисел.
§ 5. Тригонометрическая форма комплексных чисел.
§ 6. Непрерывность
§ 7. Непрерывные кривые.
§ 8. Отображение кривых. Основная теорема алгебры комплексных чисел.
§ 9. Риманова поверхность функции w = z^1/2.
§ 10. Римановы поверхности более сложных функций.
§ 11. Функции, выражающиеся в радикалах.
§ 12. Группы Галуа многозначных функций.
§ 13. Группы Галуа функций, выражающихся в радикалах.
§ 14. Теорема Абеля.
Указания, решения, ответы.
Предметный указатель





Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Теорема Абеля в задачах и решениях, электронное издание, Алексеев В.Б., 2018 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать pdf
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.Купить эту книгу



Скачать - pdf - Яндекс.Диск.



Дата публикации:





Теги: :: :: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2019-11-18 20:02:25