Алгебра, 9 класс, Алимов Ш.А., Колягин Ю.М., Сидоров Ю.В., 2012

По кнопке выше «Купить бумажную книгу» можно купить эту книгу и похожие книги в бумажном виде на сайтах официальных интернет магазинов Лабиринт, Озон, Буквоед, Читай-город, Литрес, My-shop, Book24, Books.ru.

По кнопке «Купить и скачать электронную книгу» можно купить эту книгу в электронном виде в официальном интернет магазине «ЛитРес», и потом ее скачать на сайте Литреса.

По кнопке «Найти похожие материалы на других сайтах» можно искать похожие материалы на других сайтах.

On the buttons above you can buy the book in official online stores Labirint, Ozon and others. Also you can search related and similar materials on other sites.


Алгебра, 9 класс, Алимов Ш.А., Колягин Ю.М., Сидоров Ю.В., 2012.
 
  Из истории решения алгебраических уравнений.
Итак, вы познакомились с простым способом решения алгебраических уравнений с помощью разложения многочленов на множители. Это можно сделать, если удастся найти некоторые корни уравнения.
Остаётся два главных вопроса: 1) всегда ли алгебраическое уравнение имеет хотя бы один корень и 2) как его находить?
Эти трудные вопросы рассматриваются в специальном разделе математики — «Высшая алгебра».

Алгебра, 9 класс, Алимов Ш.А., Колягин Ю.М., Сидоров Ю.В., 2012

Алгоритм деления многочленов уголком.
1) Первое слагаемое частного получается делением старшего члена делимого на старший член делителя (в задаче 1 получилось 8x2 : 2х = Ах).

2) Найденное первое слагаемое частного умножается на делитель (в задаче 1 получилось (4х) (2х + 3) = = 8х2 + 12х), произведение записывается под делимым и вычитается столбиком из делимого, в результате получается первый остаток (в задаче 1 первый остаток равен -2х - 3).

3) Первый остаток делится на делитель так же, как и в пп. 1), 2); второе слагаемое частного получается делением старшего члена первого остатка на старший член делителя (в задаче 1 получилось (-2х) : (2х) = -1), найденное второе слагаемое умножается на делитель (в задаче 1 получилось (-1) (2х + 3) = -2х - 3), произведение записывается под первым остатком и вычитается из него столбиком, в результате получается второй остаток.

Затем второй остаток делится на делитель и т. д. Этот процесс продолжается до тех пор, пока степень очередного остатка не окажется меньше степени делителя (см. далее задачи 5, 6).

ОГЛАВЛЕНИЕ
Глава I. Алгебраические уравнения. Системы нелинейных уравнении
§ 1. Деление многочленов 3
§ 2. Решение алгебраических уравнений 10
§ 3. Уравнения, сводящиеся к алгебраическим 17
§ 4. Системы нелинейных уравнений с двумя неизвестными 23
§ 5. Различные способы решения систем уравнений 27
§ 6. Решение задач с помощью систем уравнений 32
Упражнения к главе 1 35
Глава II. Степень с рациональным показателем
§ 7. Степень с целым показателем 38
§ 8. Арифметический корень натуральной степени 43
§ 9. Свойства арифметического корня 46
§ 10. Степень с рациональным показателем 50
§ 11. Возведение в степень числового неравенства 57
Упражнения к главе II 62
Глава III. Степенная функция
§ 12. Область определения функции 65
§ 13. Возрастание и убывание функции 69
§ 14. Чётность и нечётность функции 73
§ 15. Функция у = k/x 77
§ 16. Неравенства и уравнения, содержащие степень 82
Упражнения к главе III 87
Глава IV. Прогрессии
§ 17. Числовая последовательность 89
§ 18. Арифметическая прогрессия 92
§ 19. Сумма n первых членов арифметической прогрессии 97
§ 20. Геометрическая прогрессия 101
§ 21. Сумма n первых членов геометрической прогрессии 106
Упражнения к главе IV 110
Глава V. Случайные события
§ 22. События 114
§ 23. Вероятность события 118
§ 24. Решение вероятностных задач с помощью комбинаторики 124
§ 25. Геометрическая вероятность 129
§ 26. Относительная частота и закон больших чисел 131
Упражнения к главе V 138
Глава VI. Случайные величины
§ 27. Таблицы распределения 140
§ 28. Полигоны частот 146
§ 29. Генеральная совокупность и выборка 150
§ 30. Размах и центральные тенденции 156
Упражнения к главе VI 162
Глава VII Множества. Логика
§ 31. Множества 164
§ 32. Высказывания. Теоремы 170
§ 33. Уравнение окружности 178
§ 34. Уравнение прямой 182
§ 35. Множества точек на координатной плоскости 186
Упражнения к главе VII 192
Упражнения для повторения курса алгебры IX класса 197
Упражнении для повторения курса алгебры VII-IX классов 202
Задачи для внеклассной работы 226
Краткие теоретические сведения по курсу алгебры VII—IX классов 237
Ответы 255
Предметный указатель 285.

Купить книгу Алгебра, 9 класс, Алимов Ш.А., Колягин Ю.М., Сидоров Ю.В., 2012 .
Дата публикации:






Теги: :: :: :: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2018-07-20 01:53:13