Методы интегрирования обыкновенных дифференциальных уравнений, Матвеев Н.М., 1967


Методы интегрирования обыкновенных дифференциальных уравнений, Матвеев Н.М., 1967.

   В книге даются основные понятия и определения теории обыкновенных дифференциальных уравнений, излагаются наиболее важные методы интегрирования, доказываются теоремы существования решений и исследуются свойства последних. Являясь учебником для студентов университетов, она может быть использована в педагогических институтах и в технических ВУЗах, а также студентами-заочниками и лицами, самостоятельно изучающими теорию обыкновенных дифференциальных уравнений.

Методы интегрирования обыкновенных дифференциальных уравнений, Матвеев Н.М., 1967


ТЕОРЕМЫ СУЩЕСТВОВАНИЯ.
В предыдущих главах мы изложили основные понятия и определения, относящиеся к уравнению первого порядка, нормальной системе уравнений первого порядка, уравнению п-го порядка и системе уравнений высших порядков. Мы указали там, что основной задачей интегрирования как одного дифференциального уравнения, так и системы уравнений, является нахождение всех решении и изучение их свойств.

Если удастся выразить все решения в элементарных функциях, то исследование свойств решений не представляет большого труда. Однако такие случаи представляют собою редкое исключение.

Гораздо большее число уравнений удастся проинтегрировать в квадратурах. Но и эти уравнения встречаются довольно редко. Наиболее известные типы таких уравнений мы рассмотрели в предыдущих главах.

В общем случае дифференциальное уравнение не интегрируется в квадратурах. Тогда применяют приближенные методы интегрирования. При этом обычно ищут решение, удовлетворяющее некоторым дополнительным условиям, а именно решают задачу Коши или граничную (краевую) задачу.



Бесплатно скачать электронную книгу в удобном формате и читать:

Скачать книгу Методы интегрирования обыкновенных дифференциальных уравнений, Матвеев Н.М., 1967 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать




Скачать - djvu - Яндекс.Диск.
Дата публикации:





Теги: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 


Книги, учебники, обучение по разделам




Не нашёл? Найди:





2016-12-09 22:58:04