Занимательные задачи по теории графов, учебно-методическое пособие, Мельников О.И., 2001


Занимательные задачи по теории графов, учебно-методическое пособие, Мельников О.И., 2001.


В книге в занимательной форме изложены основы теории графов. Изучение этой дисциплины на факультативе в средней школе будет способствовать развитию дискретного математического мышления учеников и облегчит им освоение вычислительной техники. Элементы теории графов включены в программу углубленного изучения информатики в 10-11-х классах общеобразовательной средней школы.

Книга предназначена для школьников и учителей, задачи из нее могут быть использованы на математических олимпиадах различных уровней. Будет полезна абитуриентам, поступающим в ВУЗы с повышенными требованиями по математике.

Занимательные задачи по теории графов, учебно-методическое пособие, Мельников О.И., 2001


Оглавление

Условное разделение задач по степеням сложности3
Введение
Задачи
Решения задач
Литература
Использованные задачи
Предметный указатель
Условное разделение задач по степеням сложности
Первая степень: 1,2,4,5,6,7,11,12,13,14,15,17,19,21,22,26,33,34,35,36,37,38,39,43,45,46,53,64, 86,116,120,122,123,124,129
Вторая степень: 3,8,9,10,16,18,20,23,24,25,27,28,29,30,31, 40,41,42,44,49,52,54,56,57,59,60,61,62,63,67,72,73,75,76,77,78,80,89,90,91,92,93,94,96,100,101,112, 114,117,121,126,127,128,130,131,132,
Третья степень: 32,47,48,50,51,55,58,65,66,68,71,74,79,81,82,83,84,87,88,99,106,113,125,125,133,134
Четвертая степень: 69,70,85,95,97,102,103,104,105,107,108,109,110,111,115,118,119,135,136



Задачи.


1.Спортивное соревнование проводится по круговой системе. Это означает, что каждая пара игроков встречается между собой ровно один раз. Докажите, что в любой момент времени найдутся хотя бы два игрока, проведшие одинаковое число встреч.

2.В шахматном турнире по круговой системе участвуют семь школьников. Известие что Ваня сыграл шесть партий. Толя - пять. Леша и Дима - по три, Семен и Илья - по две. Женя - одну. С кем сыграл Леша?

3.В соревнованиях по круговой системе с пятью участниками только Ваня и Леша сыграли одинаковое число встреч, а все остальные - различное. Сколько встреч сыграли Ваня и Леша?

4.В соревновании по круговой системе с двенадцатью участниками провели все встречи. Сколько встреч было сыграно?

5.Чемпионат лагеря по футболу проводился по круговой системе. За победу в матче давалось 2 очка, за ничью - 1, за поражение - 0. Если две команды набирали одинаковое количество очков, то место определялось по разности забитых и пропущенных мячей. Чемпион набрал семь очков, второй призер - пять, третий - три. Сколько очков набрала команда, занявшая последнее место.

6.В футбольном турнире 20 команд сыграли 8 туров: каждая команда сыграла с 8 разными командами. Докажите, что найдутся три команды. не сыгравшие между собой пока ни одного матча.

7.В компании, состоящей из пяти человек, среди любых трех человек найдутся двое знакомых и двое незнакомых друг с другом. Докажите, что компанию можно рассадить за круглым столом так, чтобы по обе стороны от каждого человека сидели его знакомые.

8.Известно, что в компании каждый человек знаком не менее, чем с половиной присутствующих. Докажите, что можно выбрать из компании четырех человек и рассадить за круглым столом так, что при этом каждый будет сидеть рядом со своими знакомыми.

9.В некотором государстве система авиалиний устроена так, что любой город соединен авиалиниями не более чем с тремя другими и из любого города в любой другой можно перелететь, сделав не более одной пересадки. Какое наибольшее число городов может быть в этом государстве?

10.У каждого из депутатов парламента не более трех противников. (Если депутат А - противник депутата В, то депутат В - противник депутата А.) Докажите, что депутатов можно разбить на две палаты так, что каждый депутат будет иметь не более одного противника в своей палате.

11.В теннисном турнире каждый игрок команды "синих" встречается с каждым игроком команды "красных". Число игроков в командах одинаково и не больше восьми. "Синие" выиграли в четыре раза больше встреч, чем "красные". Сколько человек в каждой из команд?




Бесплатно скачать электронную книгу в удобном формате и читать:

Скачать книгу Занимательные задачи по теории графов, учебно-методическое пособие, Мельников О.И., 2001 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать




Скачать книгу Занимательные задачи по теории графов, учебно-методическое пособие, Мельников О.И., 2001 - djvu - depositfiles

Скачать книгу Занимательные задачи по теории графов, учебно-методическое пособие, Мельников О.И., 2001 - djvu - Яндекс.Диск
Дата публикации:





Теги: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 


Книги, учебники, обучение по разделам




Не нашёл? Найди:





2016-12-06 23:26:31