математика

Математика, алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа, 11 класс, учебник для учащихся общеобразовательных организаций (углублённый уровень), Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И., 2014

Математика, алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа, 11 класс, учебник для учащихся общеобразовательных организаций (углублённый уровень), Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И., 2014.

Учебник соответствует требованиям ФГОС среднего общего образования. В книге выделены типовые задачи для подготовки учащихся к Единому государственному экзамену, предложены алгоритмы их выполнения и варианты заданий для самоконтроля. В учебнике реализованы современные подходы к формированию проектно-исследовательских умений и ИКТ-компетенций. Темы индивидуальных проектов, предложенные в учебнике, входят в базовое академическое образование по экономике.

§ 1. Неопределённый интеграл.
1. Введение. С помощью дифференцирования можно, зная закон движения тела, найти его мгновенную скорость в любой момент времени. Часто возникает необходимость в решении обратной задачи: зная скорость прямолинейно движущегося тела в каждый момент времени, найти закон движения тела. Эти и аналогичные им задачи решаются с помощью операции интегрирования функций, которая обратна операции дифференцирования.
Раздел математики, в котором изучаются свойства операции интегрирования и её приложения к решению задач физики и геометрии, называют интегральным исчислением.
Напомним выведенные в главах 5 и 6 формулы для производных и вытекающие из них формулы для дифференциалов:

Математика, алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа, 11 класс, учебник для учащихся общеобразовательных организаций (углублённый уровень), Виленкин Н.Я., Ивашев-Мусатов О.С., Шварц-бурд С.И., 2014
Скачать и читать Математика, алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа, 11 класс, учебник для учащихся общеобразовательных организаций (углублённый уровень), Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И., 2014
 

Математика, алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа, 10 класс, учебник для учащихся общеобразовательных организаций (углублённый уровень), Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И., 2014

Математика, алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа, 10 класс, учебник для учащихся общеобразовательных организаций (углублённый уровень), Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И., 2014.

Учебник соответствует требованиям Федерального государственного стандарта среднего образования и предназначен для изучения курса алгебры и начал математического анализа в 10-м классе на углублённом уровне.
В учебнике выделены типовые задачи для полготовки учащихся к Единому государственному экзамену, предложены алгоритмы их выполнения и варианты заданий для самоконтроля, реализованы современные подходы к формированию проектно-исследовательских умений и ИКТ-компетенций. Темы индивидуальных проектов, предложенные в учебнике, входят в базовое академическое образование по экономике.


Фрагмент из книги:

3. Числовые множества и операции над ними. Любую совокупность действительных чисел называют числовым множеством. Само множество действительных чисел обозначают буквой R.
Другими примерами числовых множеств могут служить:
а) множество R, положительных действительных чисел;
б) множество R отрицательных действительных чисел;
в) множество Q, положительных рациональных чисел;
г) множество Q отрицательных рациональных чисел;
д) множество Q рациональных чисел;
е) множество Z целых чисел;
ж) множество N натуральных чисел;


Математика, алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа, 10 класс, учебник для учащихся общеобразовательных организаций (углублённый уровень), Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И., 2014
Скачать и читать Математика, алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа, 10 класс, учебник для учащихся общеобразовательных организаций (углублённый уровень), Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И., 2014
 

Метод интегральных преобразований в уравнениях с частными производными, Иванов А.О., Булычева С.В., 2004

Метод интегральных преобразований в уравнениях с частными производными, Иванов А.О., Булычева С.В., 2004.

  В пособии рассмотрены основные положения метода интегральных преобразований и приложений к решениям краевых задач в частных производных. Изложены ключевые аспекты математической теории интегральных преобразований Фурье и Лапласа. Учебный материал представлен на примере решения большого количества гиперболических и параболических задач математической физики. Для закрепления усвоенных навыков приведены задачи с ответами. Пособие содержит все необходимые сведения для самостоятельного изучения метода интегральных преобразований.
Для студентов-математиков всех форм обучения, сталкивающихся с задачами подобного типа, а также для научных работников и инженеров.

Метод интегральных преобразований в уравнениях с частными производными, Иванов А.О., Булычева С.В., 2004
Скачать и читать Метод интегральных преобразований в уравнениях с частными производными, Иванов А.О., Булычева С.В., 2004
 

Новые алгоритмы вычислительной гидродинамики для многопроцессорных вычислительных комплексов, Монография, Головизнин В.М., Зайцев М.А., Карабасов С.А., Короткин И.А., 2013

Новые алгоритмы вычислительной гидродинамики для многопроцессорных вычислительных комплексов, Монография, Головизнин В.М., Зайцев М.А., Карабасов С.А., Короткин И.А., 2013.

  В настоящей монографии, предназначенной для студентов, аспирантов и научных сотрудников, собран воедино и систематизирован материал многолетней работы большой группы специалистов в области математического моделирования и вычислительной математики. Среди множества направлений и подходов, конкурирующих в современном мире, авторы выбрали сравнительно новое направление (метод «КАБАРЕ»), к развитию которого они оказались в той или иной мере причастны. Данный подход, развиваемый в МГУ имени М.В.Ломоносова, ИБРАЭ РАН, ЦАГИ и ряде других российских и зарубежных (Кембриджский университет, Лондонский университет «Квин Мэри») организаций, имеет хорошие конкурентные позиции и активно развивается.

В предлагаемой монографии очень подробно описана ключевая идея метода «КАБАРЕ» в ее развитии - от простейших линейных одномерных уравнений гиперболического типа до методик решения многомерных задач гидродинамики и газовой динамики на неструктурированных сетках в сложных пространственных областях, характерных для приложений индустриальной математики.
Книгу можно рассматривать в качестве ученого пособия и основы для разработки вычислительного практикума по методам решения уравнений математической физики с доминирующими процессами сеточного переноса.

Новые алгоритмы вычислительной гидродинамики для многопроцессорных вычислительных комплексов, Монография, Головизнин В.М., Зайцев М.А., Карабасов С.А., Короткин И.А., 2013
Скачать и читать Новые алгоритмы вычислительной гидродинамики для многопроцессорных вычислительных комплексов, Монография, Головизнин В.М., Зайцев М.А., Карабасов С.А., Короткин И.А., 2013
 

Математический кружок, 9 класс, Бугаенко В.О., 2000

Математический кружок, 9 класс, Бугаенко В.О., 2000.

  Брошюра написана по материалам заданий математического кружка для 9 класса, проходившего в 1999-2000 уч. году на Малом мехмате.
Брошюру могут использовать как школьники, которые любят решать математические задачи, так и руководители кружков при подготовке занятий. Конечно, книга не заменит полноправного «живого» участия в кружке. И руководителям кружка я не советую один к одному копировать приведённые листочки. Однако надеюсь, что собранный материал сможет оказать помощь и тем, и другим.

Математический кружок, 9 класс, Бугаенко В.О., 2000
Скачать и читать Математический кружок, 9 класс, Бугаенко В.О., 2000
 

Точки Трокара и изогональное сопряжение, Прасолов В.В., 2000

Точки Трокара и изогональное сопряжение, Прасолов В.В., 2000.

 Изогональное сопряжение относительно треугольника А1А2А3 сопоставляет точке X такую точку У, что прямая YAi симметрична прямой XAi относительно биссектрисы угла Ai (i = 1, 2, 3). Это преобразование обладает многими интересными свойствами. В частности, оно переводит друг в друга две замечательные точки треугольника - точки Брокара.
Текст брошюры представляет собой обработку записи лекции, прочитанной автором 6 ноября 1999 года на Малом мехмате для школьников 9-11 классов.

Точки Трокара и изогональное сопряжение, Прасолов В.В., 2000
Скачать и читать Точки Трокара и изогональное сопряжение, Прасолов В.В., 2000
 

Инверсия, Жижилкин И.Д., 2009

Инверсия, Жижилкин И.Д., 2009.

  Инверсия — отображение плоскости на себя, которое может переводить окружности в прямые. С одной стороны, это помогает решать «школьные» геометрические задачи, особенно те, в которых речь идёт о многих пересекающихся или касающихся окружностях. В то же время знакомство с инверсией необходимо для дальнейшего изучения таких разделов математики, как комплексный анализ и геометрия Лобачевского.
После определения и вывода основных свойств инверсии в брошюре разбираются классические задачи Архимеда, Паппа, Аполлония. Рассказывается также об инверсии пространства, стереографической проекции сферы на плоскость, пучках окружностей и сфер, что приводит к доказательству знаменитой теоремы Понселе.
Материал брошюры рассчитан на старшеклассников, учителей математики и всех интересующихся элементарной геометрией.

Инверсия, Жижилкин И.Д., 2009
Скачать и читать Инверсия, Жижилкин И.Д., 2009
 

Простейшие примеры математических доказательств, Успенский В.А., 2009

Простейшие примеры математических доказательств, Успенский В.А., 2009.

 В брошюре доступным неспециалистам языком рассказывается о некоторых из основополагающих принципов, на которых строится наука математика: чем понятие математического доказательства отличается от понятия доказательства, принятого в других науках и в повседневной жизни, какие простейшие приёмы доказательства используются в математике, как менялось со временем представление о «правильном» доказательстве, что такое аксиоматический метод, в чём разница между истинностью и доказуемостью.
Для очень широкого круга читателей, начиная со школьников старших классов.

Простейшие примеры математических доказательств, Успенский В.А., 2009
Скачать и читать Простейшие примеры математических доказательств, Успенский В.А., 2009
 
Показана страница 158 из 599