Основы математики для экономистов, Линейная алгебра и экономические модели, Дыхта В.А., 2003


Основы математики для экономистов, Линейная алгебра и экономические модели, Дыхта В.А., 2003.
 
  Книга представляет собой вводный курс линейной алгебры, изложенный в тесной связи с различными экономическими приложениями. Он написан на основе опыта чтения лекций в Иркутской государственной экономической академии. Охват теоретического материала ограничен алгеброй векторов, матриц и теорией систем линейных уравнений. Такой выбор продиктован тем, что содержание книги представляет собой часть базового курса математики для экономистов и готовящегося к изданию учебника. Оставшиеся вне поля зрения вопросы линейной алгебры (собственные значения, квадратичные формы, неотрицательные решения систем уравнений и неравенств) найдут свое отражение в соответствующих разделах учебника. Тем не менее, данная книга может изучаться совершенно автономно и служить основой небольшого специализированного курса. Рассмотренные примеры, экономические модели и упражнения прикладного характера (их свыше сотни) призваны облегчить самостоятельное изучение курса.
Рекомендуется для студентов всех экономических специальностей. Может быть полезна математикам-прикладникам, аспирантам, а также школьникам, интересующимся применением математики к экономике.

Основы математики для экономистов, Линейная алгебра и экономические модели, Дыхта В.А., 2003


Модель льготного налогообложения при благотворительной деятельности.
Рассмотрим линейную модель, которая позволяет определить суммы различных налоговых отчислений фирмы с учетом её благотворительной деятельности.

Начнем с числового примера модели.
Предположим, что фирма получила прибыль 10 млрд р. (до уплаты налогов и благотворительных отчислений). По соглашению с областным благотворительным фондом фирма должна перечислить ему 10% от той части прибыли, которая останется у неё после уплаты федерального и регионального налогов. В то же время федеральный налог составляет 5% от части прибыли, оставшейся у фирмы после благотворительных отчислений, а региональный налог в 40%; берется от части прибыли фирмы, которая остается после уплаты федерального налога и отчисления благотворительному фонду. По этой информации требуется рассчитать суммы всех налогов и благотворительных пожертвований.

Заметим, что в рассматриваемой ситуации налогообложение стимулирует благотворительность, поскольку ставки налогов относятся к показателям прибыли, не включающим благотворительную сумму.

Оглавление
Предисловие
1 Введение и примеры линейных экономических моделей
1.1 Что изучается в линейной алгебре?  
1.2 Линейные системы и модели  
1.3 Модель льготного налогообложения при благотворительной деятельности
1.4 Равновесие на рынках благ и денег в макромодели Кейнса: линейная модель IS-LM
1.5 Модель Леонтьева „затраты-выпуск"
1.6 Модель портфеля активов
2 Векторно-матричные операции
2.1 Векторное пространство R"
2.1.1 Понятие n-мерного вектора. Обозначения
2.1.2 Пространство R". Длина вектора
2.1.3 Сравнение векторов
2.1.4 Арифметические действия с векторами
2.1.5 Линейная комбинация векторов и линейная зависимость  
2.1.6 Скалярное произведение векторов
2.1.7 Расстояние между точкам и
2.1.8 Угол между векторами. Неравенства для длин векторов  
2.1.9 Стандартный базис в R”. Разложение вектора по базису  
2.1.10 Параметрические уравнения прямой, луча и отрезка
2.2 Линейные функции, уравнения и неравенства  
2.2.1 Линейные функции векторного аргумента
2.2.2 Линейные уравнения и плоскости в R"
2.2.3 Линейные неравенства и полупространства
2.3 Матрицы и маnричные операции
2.3.1 Понятие матрицы  
2.3.2 Некоторые специальные матрицы  
2.3.3 Строчная и столбцевая структура матриц
2.3.4 Действия с матрицами
2.4 Умножение матрицы на вектор и линейные преобразования
2.5 Определители квадратных матриц
2.5.1 Определители матриц 2-ю порядка
2.5.2 Определители матриц 3-ю порядка
2.5.3 Общий случай: вычисление определителя матрицы n-го порядка  
2.5.4 Теорема о равноправии строк и столбцов определителя  
2.5.5 Свойства определителей
2.5.6 Практическое вычисление определителей
3 Системы линейных уравнений
3.1 Системы линейных уравнений: начальные понятия
3.1.1 Система линейных уравнений и развернут ой форме записи. Понятия совместности и решения системы
3.1.2 Векторно-матричные формы записи линейных систем
3.1.3 Постановка основных вопросов, связанных с линейными системами  
3.1.4 Модель "затраты-выпуск“ в матричной форме
3.2 Метод исключения Гаусса
3.2.1 Схема метода
3.2.2 Применение к модели "затраты-выпуск" с тремя отраслями  
3.2.3 Предварительные выводы
3.3 Линейная зависимость и базисы
3.3.1 Линейная зависимость векторов: развёрнутое изложение вопроса
3.3.2 Формулировка основной теоремы. Базисы и разложение вектора по произвольному базису
3.3.3 Критерий существования нетривиальных решений однородной системы
3.3.4 Доказательство основной теоремы
3.4 Обратные матрицы
3.4.1 Определение, критерий существования и свойства обратной матрицы
3.4.2 Формула для вычисления обратной матрицы
3.5 Решение систем уравнений с обратимой матрицей
3.5.1 Решение с помощью обратной матрицы
3.5.2 Решение по формулам Крамера
3.5.3 Анализ линейной модели IS-LM с применением правила Крамера
3.5.4 Сравнение с методом исключения
3.6 Ранг матрицы  
3.6.1 Определение и теорема о ранге матрицы
3.6.2 Методы вычисления ранга матрицы
3.6.3 Ранг и условия обратимости матрицы
3.7 Решение произвольных систем линейных уравнений
3.7.1 Условие совместимости: теорема Кронекера-Капелли
3.7.2 Решение совместной системы
3.7.3 Матричное представление общего решения. Базисные решения
4 Анализ экономических моделей
4.1 Равновесие спроса и предложения и экономике
4.1.1 Описание нелинейной модели и ее линеаризация
4.1.2 Исследование модели с помощью правила Крамера
4.1.3 Равновесие при налогообложении
4.2 Анализ модели Леонтьева „затраты-выпуск"
4.2.1 Понятие продуктивности модели
4.2.2 Критерий продуктивности модели Леонтьева
4.2.3 Двойственная система для определения цен. Прибыльность модели Леонтьева
4.3 Анализ инвестиций в портфель ценных бумаг
4.3.1 Показатели эффективности и чипы портфелей активов  
4.3.2 Условия существования портфелей различных типов: применение основной теоремы совместности и систем  
4.4 Парадокс голосования и проблема коллективною выбора
4.4.1 Постановка вопроса и парадокс Кондорсе
4.4.2 Теорема о контрпрофиле  
4.4.3 Как часто может наблюдаться парадокс голосования?
4.4.4 Другие правила и парадоксы голосования
4.4.5 Заключение.



Бесплатно скачать электронную книгу в удобном формате и читать:

Скачать книгу Основы математики для экономистов, Линейная алгебра и экономические модели, Дыхта В.А., 2003 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать




Скачать - pdf - Яндекс.Диск.
Дата публикации:





Теги: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 


Книги, учебники, обучение по разделам




Не нашёл? Найди:





2016-12-07 22:57:40