Подготовка к ЕГЭ по математике, задания В10, Егор Цалкович, 2012


Подготовка к ЕГЭ по математике, задания В10, Егор Цалкович, 2012.

Комбинаторика.

Все мы когда-нибудь задавались вопросом: сколькими способами можно что-то сделать? Ответ на этот вопрос дает наука комбинаторика.
В каждой из комбинаторных задач необходимо подсчитать число возможных вариантов осуществления чего-либо, ответить на главный вопрос комбинаторики «сколькими способами можно это сделать?».

Множество комбинаторных задач можно решить, зная два основных правила комбинаторики: сложения и умножения.
Упрощенно правило умножения звучит так: если элемент А можно выбрать n способами и, при любом выборе А. элемент В можно выбрать m способами, то пару (А. В) можно выбрать п•m способами. Это правило действует также в случаях, когда элементов больше двух.
Мы думаем, что определение для некоторых может показаться непонятным, поэтому сразу перейдем к примеру использования правила умножения.


Подготовка к ЕГЭ по математике, Егор Цалкович, 2012

Пример.


Сейф имеет шифр, состоящий из 4 букв - А, В, С и Е. Сколько всего существует возможных вариантов шифра, если буквы в шифре не повторяются?

Решение:
Для наглядности изобразим кодовый замок сейфа.
     ΟΟΟΟ
     А В С Е
На каждом из четырех мест шифра стоит одна буква. Начнем рассматривать все варианты размещения этих букв, начиная с первого места.
Итак, на первом месте может стоять одна из букв А, В, С или Е.

Всего вариантов размещения букв на первом месте столько же, сколько и самих букв - то есть 4. Рассмотрим второе место шифра.
На втором месте может стоять уже не любая буква - ведь на первом месте уже находится одна из выбранных нами букв - а по условию, буквы не должны повторяться. То есть всего вариантов размещения букв на втором месте равно 4-1=3 варианта.
На третьем месте могут находиться всего две буквы - ведь две уже стоят на первых двух местах. Итого вариантов для третьего места ровно 2.
Выбрав три буквы, мы автоматически ставим оставшуюся букву на четвертое место шифра. Итого - один вариант для четвертого места.
Всего вариантов шифра: 4 • 3 • 2 • 1 = 24

В этой задаче мы действовали согласно правилу умножения - ведь элемент А (первую букву шифра) можно выбрать 4 способами и, при любом выборе А (первой буквы шифра), элемент В (вторую букву шифра) можно выбрать 3 способами - а значит, пару (А, В) (первую и вторую цифру шифра) можно выбрать 4 • 3 способами. Аналогично строятся рассуждения и для оставшихся двух букв шифра



Бесплатно скачать электронную книгу в удобном формате и читать:

Скачать книгу Подготовка к ЕГЭ по математике, задания В10, Егор Цалкович, 2012 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать




Скачать книгу Подготовка к ЕГЭ по математике, задания В10, Егор Цалкович, 2012 - pdf - depositfiles.

Скачать книгу Подготовка к ЕГЭ по математике, задания В10, Егор Цалкович, 2012 - pdf - Яндекс.Диск.

Дата публикации:





Теги: :: :: :: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 



Не нашёл? Найди:





2016-12-06 23:33:39