дифференциальное уравнение

Геометрические методы в теории обыкновенных дифференциальных уравнений, Арнольд В.И., 1999

Геометрические методы в теории обыкновенных дифференциальных уравнений, Арнольд В.И., 1999.

    В книге изложен ряд основных идей и методов, применяемых для исследования обыкновенных дифференциальных уравнений. Элементарные методы интегрирования рассматриваются с точки зрения общематематических понятий (разрешение особенностей, группы Ли симметрии, диаграммы Ньютона и т.д.). Теория уравнений с частными производными первого порядка изложена на основе геометрии контактной структуры.

    В книгу включены классические и современные результаты теории динамических систем: структурная устойчивость, У-системы, аналитические методы локальной теории в окрестности особой точки или периодического решения (нормальные формы Пуанкаре), теория бифуркации фазовых портретов при изменении параметров (мягкое и жесткое возбуждение автоколебаний при потере устойчивости), удвоение периода Фейгенбаума, теорема Дюлака и др. Книга рассчитана на широкий круг математиков и физиков - от студентов до преподавателей и научных работников.

Геометрические методы в теории обыкновенных дифференциальных уравнений, Арнольд В.И.


Скачать и читать Геометрические методы в теории обыкновенных дифференциальных уравнений, Арнольд В.И., 1999
 





 

Не нашёл? Найди:





2018-08-18 13:07:12