Школьные математические кружки, Непрерывность, Блинков А.Д., Гуровиц В.М., 2015

Школьные математические кружки, Непрерывность, Блинков А.Д., Гуровиц В.М., 2015.

  Двенадцатая книжка серии «Школьные математические кружки» посвящена одному из фундаментальных понятий математики — непрерывности и предназначена для занятий со школьниками 7-11 классов. В неё вошли разработки девяти занятий математического кружка с подробно разобранными примерами различной сложности, задачами для самостоятельного решения и методическими указаниями для учителя. В приложении содержится список дополнительных задач и их решения. Отдельная часть этого раздела посвящена строгим формулировкам определений непрерывности и её свойств, а также формулировкам утверждений более высокого уровня, которые практически являются теоремами и фактами высшей математики. Для удобства использования заключительная часть книжки, как всегда, сделана в виде раздаточных материалов.
Книжка адресована школьным учителям математики и руководителям математических кружков. Надеемся, что она будет интересна школьникам и их родителям, студентам педагогических вузов, а также всем любителям математики.

Школьные математические кружки, Непрерывность, Блинков А.Д., Гуровиц В.М., 2015


Непрерывные траектории.
Представим себе, что по поверхности стола с ограниченной скоростью ползает (но не взлетает!) муха.
Тогда, как бы она ни меняла направление своего движения, мы сможем нарисовать траекторию этого движения, «не отрывая руки». Понятно, что в этом случае муха проходит через все промежуточные точки этой кривой и если измерять путь, пройденный мухой, то можно утверждать,

что эта величина принимает любое значение от 0 (в начале маршрута) до его значения в конце маршрута (в какие-то моменты времени). Тем самым мы опять имеем дело с величиной, изменяющейся непрерывно. Можно провести аналогию с ДНВ (рассмотренной на занятии 1), но её отличие от ДНВ состоит в том, что количество рассматриваемых точек (а также моментов времени и значений пройденного пути) бесконечно.

Зафиксируем какую-либо точку (например, центр стола). Тогда и расстояние от мухи до этой точки по мере её движения также изменяется непрерывно. Более того, если в этой точке поместить фонарик и его лучом плавно следить за перемещением мухи, то угол, образуемый лучом фонаря с каким-то фиксированным направлением, также изменяется непрерывно.

Оглавление.
Предисловие.
Занятие 1. Дискретная непрерывность.
Занятие 2. Непрерывные траектории.
Занятие 3. Дискретная непрерывность на плоскости.
Занятие 4. Непрерывность в алгебре.
Занятие 5. Непрерывность в геометрии (планиметрия).
Занятие 6. Площади, периметры, массы.
Занятие 7. Непрерывность в геометрии (стереометрия).
Занятие 8. Малые шевеления.
Занятие 9. Функции общего вида и функциональные соотношения.
Дополнительные задачи.
Решения дополнительных задач.
Вместо заключения.
Авторы задач.
Список литературы и веб-ресурсов.
Раздаточный материал.



Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Школьные математические кружки, Непрерывность, Блинков А.Д., Гуровиц В.М., 2015 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать pdf
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.Купить эту книгу



Скачать - pdf - Яндекс.Диск.
Дата публикации:





Теги: :: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2019-11-18 19:59:04