Вариационное исчисление и оптимальное управление, Ванько В.И., Ермошина О.В., Кувыркин Г.Н., 2018

Вариационное исчисление и оптимальное управление, Ванько В.И., Ермошина О.В., Кувыркин Г.Н., 2018.

Наряду с изложением основ классического вариационного исчисления и элементов теории оптимального управления рассмотрены прямые методы вариационного исчисления и методы преобразования вариационных задач, приводящие, в частности, к двойственным вариационным принципам. На примерах из физики, механики и техники показана эффективность методов вариационного исчисления и оптимального управления для решения прикладных задач. Для студентов и аспирантов технических университетов, а также для инженеров и научных работников, специализирующихся в области прикладной математики и математического моделирования.

Вариационное исчисление и оптимальное управление, Ванько В.И., Ермошина О.В., Кувыркин Г.Н., 2018


Задачи, приводящие к вариационным проблемам.
Примеры успешного решения экстремальных проблем можно найти уже в древней истории.
При мер 1.1 (задача Дидоны). В ТХ пеке до н.э. финикийская царевна Дидона и несколько ее спутников, спасаясь от преследования тирской знати, бежали из г. Тира и высадились на африканском берегу Средиземного моря. Решив поселиться именно здесь, Дидона упросила местных жителей отдать в ее распоряжение участок земли, который можно охватить шкурой быка (чувствуете двусмысленность постановки вопроса?). Простодушный правитель тех мест не понял всей глубины замысла и согласился отдать беглецам участок земли, площадь которого, по его разумению, должна равняться площади расправленной шкуры быка. Дидона же после заключения соглашения разрезала шкуру быка на тонкие полоски, связала их в длинный ремень и ограничила им довольно значительную территорию на берегу моря. Так был заложен город Карфаген, который впоследствии был-таки разрушен римлянами.

Задача, которую поставила Дидона, может быть сформулирована следующим образом. Найти такую кривую заданной длины L (L в упомянутой выше истории — длина ремня из шкуры быка), которая ограничивает на плоскости фигуру наибольшей площади.

ОГЛАВЛЕНИЕ.
Предисловие.
Основные обозначения.
ЧАСТЬ I. Классическое вариационное исчисление.
1. ОСНОВНЫЕ ПОНЯТИЯ.
1.1. Задачи, приводящие к вариационным проблемам.
1.2. Основные определения.
1.3. Основные леммы вариационного исчисления.
1.4. Некоторые замечания о задачах вариационного исчисления.
Вопросы и задачи.
2. ВАРИАЦИОННЫЕ ЗАДАЧИ С ФИКСИРОВАННЫМИ ГРАНИЦАМИ.
2.1. Простейшая задача вариационного исчисления.
2.2. Функционалы от нескольких функций.
2.3. Функционалы с производными высшего порядка.
2.4. Функционалы от функций многих переменных.
2.5. Канонический вид уравнений Эйлера.
2.6. Инвариантность формы представления уравнения Эйлера.
2.7. Простейшая задача в параметрической форме.
2.8. Принцип Гамильтона. Интеграл энергии.
Вопросы и задачи.
3. ВАРИАЦИОННЫЕ ЗАДАЧИ С ПОДВИЖНЫМИ ГРАНИЦАМИ.
3.1. Задача о подвижными концами.
3.2. Задача с подвижными границами.
3.3. Экстремали с угловыми точками.
3.4. Задача с подвижными границами в пространстве.
3.5. Задачи с односторонними вариациями.
Вопросы и задачи.
4. ЗАДАЧИ НА УСЛОВНЫЙ ЭКСТРЕМУМ.
4.1. Основные типы .задач на условный экстремум.
4.2. Необходимые условия в задаче Лагранжа.
4.3. Необходимые условия в изопериметрической задаче.
4.4. Примеры задач на условный экстремум.
4.5. Принцип взаимности в изопериметрических задачах.
4.6. Задача Вольца и задача Майера.
Вопросы и задачи.
5. ДОСТАТОЧНЫЕ УСЛОВИЯ ЭКСТРЕМУМА.
5.1. Слабый экстремум.
5.2. Условие Якоби.
5.3. Инвариантный интеграл Гильберта.
5.4. Сильный экстремум.
Вопросы и задачи.
ЧАСТЬ II. Оптимальное управление.
6. ВАРИАЦИОННЫЕ МЕТОДЫ В ОПТИМАЛЬНОМ УПРАВЛЕНИИ.
6.1. Постановка задач оптимального управления.
6.2. Задача Лагранжа в форме Понтрягина.
6.3. Некоторые задачи с ограничениями в классическом вариационном исчислении.
6.4. Линейные задачи оптимального управления.
6.5. Обсуждение методов вариационного исчисления.
Вопросы и задачи.
7. ПРИНЦИП МАКСИМУМА.
7.1. Автономная система управления. Формулировка принципа максимума.
7.2. Обсуждение принципа максимума.
7.3. Задача быстродействия.
7.4. Линейная задача оптимального быстродействия.
7.5. Задача синтеза управления.
7.6. Задача с подвижными концами.
7.7. Неавтономные системы.
7.8. Понятие особого управления.
Вопросы и задачи.
8. МЕТОД ДИНАМИЧЕСКОГО ПРОГРАММИРОВАНИЯ.
8.1. Принцип оптимальности.
8.2. Уравнение Веллмана.
8.3. Уравнение Веллмана в задаче быстродействия.
8.4. Связь метода динамического программирования с принципом максимума.
8.5. Оптимальная стабилизация.
Вопросы и задачи.
ЧАСТЬ III. Прямые методы вариационного исчисления.
9. ФОРМУЛИРОВКА ВАРИАЦИОННЫХ ЗАДАЧ.
9.1. Операторное уравнение.
9.2. Вариационное уравнение.
9.3. Примеры построения функционала по вариационному уравнению.
9.4. Исследование выпуклости функционала.
Вопросы и задачи.
10. МЕТОДЫ РЕШЕНИЯ ВАРИАЦИОННЫХ ЗАДАЧ.
10.1. Минимизирующие последовательности.
10.2. Методы приближенного решения вариационных задач.
10.3. Собственные значения симметрического оператора.
10.4. Приближенное решение задачи на собственные значения.
Вопросы и задачи.
11. ДВОЙСТВЕННЫЕ ВАРИАЦИОННЫЕ ЗАДАЧИ.
11.1. Альтернативные функционалы.
11.2. Построение альтернативного функционала.
11.3. Оценка погрешности приближенного решения.
Вопросы и задачи.
ЧАСТЬ IV. Приложения вариационных методов.
12. ПРИНЦИП ГАМИЛЬТОНА.
13. КОЛЕБАНИЯ СТРУНЫ.
14. КОЛЕБАНИЯ МЕМБРАНЫ.
15. УРАВНЕНИЯ ДВИЖЕНИЯ ИДЕАЛЬНОЙ ЖИДКОСТИ.
16. ЗАДАЧА ЧАПЛЫГИНА.
17. АЭРОДИНАМИЧЕСКАЯ ЗАДАЧА НЬЮТОНА.
18. ЗАДАЧА О ПРОДОЛЬНОМ ИЗГИБЕ УПРУГОГО СТЕРЖНЯ.
18.1. Действие потенциальной силы.
18.2. Действие следящей силы.
18.3. Динамический подход.
19. ВАРИАЦИОННЫЕ ПРИНЦИПЫ ЛАГРАНЖА, РЕЙССНЕРА И КАСТИЛЬЯНО.
20. ВАРИАЦИОННЫЕ ПРИНЦИПЫ ТЕРМОУПРУГОСТИ.
21. ДВУСТОРОННИЕ ОЦЕНКИ В ТЕПЛОПРОВОДНОСТИ.
Рекомендуемая литература.
Предметный указатель.



Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Вариационное исчисление и оптимальное управление, Ванько В.И., Ермошина О.В., Кувыркин Г.Н., 2018 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать pdf
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.Купить эту книгу



Скачать - pdf - Яндекс.Диск.
Дата публикации:





Теги: :: :: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2019-01-17 08:57:12