Математический анализ в задачах и упражнениях, учебное пособие, Виноградова И.А., Олехник С.Н., Садовничий В.А., 1991

Математический анализ в задачах и упражнениях, учебное пособие, Виноградова И.А., Олехник С.Н., Садовничий В.А., 1991.

Пособие составлено на материале занятий по курсу математического
анализа на II курсе механико-математического факультета МГУ и отражает опыт преподавания кафедры математического анализа. Перед задачами приводятся развернутые методические указания. В них даны все используемые в данном параграфе определения, формулировки основных теорем, вывод некоторых соотношений, приведены подробные решения характерных задач, обращено внимание на часто встречающиеся ошибки. Содержание задач и упражнений согласовано с теоретическим курсом математического анализа. Большая часть задач и упражнений отлична от задач, содержащихся в известном задачнике Б.П. Демидовича.
Для студентов математических специальностей университетов и педвузов и студентов технических вузов с углубленным изучением математического анализа.

Математический анализ в задачах и упражнениях, учебное пособие, Виноградова И.А., Олехник С.Н., Садовничий В.А., 1991

Замена переменных в двойном интеграле. Переход к полярной и обобщенной полярной системам координат
Замена переменных в двойном интеграле приводит как к изменению подынтегрального выражения, так и к изменению множества, по которому берется интеграл. В отличие от одномерного интеграла, где связь двух промежутков интегрирования устанавливается просто, для многомерного интеграла найти множество изменения новых переменных достаточно трудно, поэтому главное внимание при выборе зависимости между новыми и старыми переменными обращается именно на нахождение этого множества. Наиболее простым случаем является тот, когда границами множества D, по которому берется интеграл, являются линии уровня достаточно гладких функций: ф1(x, у) и ф2(x, у), т. е.


ОГЛАВЛЕНИЕ.

Предисловие
Глава 1. Интегральное исчисление функций многих переменных
§ 1. Определение и общие свойства интеграла от функции f:Rn--R
§ 2. Двойной интеграл. Его геометрические и механические приложения
1. Теорема Фубини
2. Замена переменных в двойном интеграле. Переход к полярной и обобщенной полярной системам координат
3. Площадь поверхности и ее вычисление
4. Площадь плоской фигуры и объем пространственного тела
5. Механические приложения двойного интеграла
§ 3. Тройной интеграл. Его геометрические и механические приложения
1. Общие свойства. Теорема Фубини
2. Замена переменных. Переход к цилиндрическим, сферическим и обобщенным сферическим координатам
3. Объем тела
4. Механические приложения тройного интеграла
§ 4. Несобственный кратный интеграл
Задачи
Ответы
Глава II. Криволинейный и поверхностный интегралы первого рода
§ 1. Криволинейный интеграл первого рода
§ 2. Поверхностный интеграл первого рода
Задачи
Ответы
Глава III. Криволинейный и поверхностный интегралы второго рода.
Векторный анализ
§ 1. Ориентация кусочно-гладкой кривой и кусочно-гладкой поверхности
§ 2. Дифференциальные формы в курсе анализа. Интегрирование дифференциальных форм. Общие сведения
§ 3. Криволинейный интеграл второго рода
§ 4. Поверхностный интеграл второго рода
§ 5. Векторный анализ
§ 2*. Криволинейный интеграл второго рода
§ 3*. Поверхностный интеграл второго рода
§ 4*. Векторный анализ
Задачи
Ответы
Теоретические задачи




Бесплатно скачать электронную книгу в удобном формате и читать:

Скачать книгу Математический анализ в задачах и упражнениях, учебное пособие, Виноградова И.А., Олехник С.Н., Садовничий В.А., 1991 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать




Скачать - djvu - Яндекс.Диск.

Дата публикации:





Теги: :: :: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2018-07-21 22:59:57