высшая математика

Практическое пособие по высшей математике, Баранова Е., Васильева Н., Федотов В., 2013

Практическое пособие по высшей математике, Баранова Е., Васильева Н., Федотов В., 2013.

 Учебное пособие по высшей математике для студентов и преподавателей технических и экономических вузов. Содержит справочный материал по разделам высшей математики, методические рекомендации по решению задач, типовые задания с подробными решениями и разбором характерных ошибок, варианты типовых заданий (типовых расчетов) по курсу высшей математики технического университета, выполнение которых является требованием образовательного стандарта. Студентам эта книга вполне заменит репетитора, а преподавателю сэкономит время на подготовку практических и домашних заданий. Второе издание учебного пособия дополнено материалами по числовым рядам, а также кратным, криволинейным и поверхностным интегралам.
Допущено научно-методическим советом по математике вузов Северо-Запада в качестве учебного пособия для студентов вузов, обучающихся по направлениям 550000 «Технические науки», 650000 «Техника и технологии».

Практическое пособие по высшей математике, Баранова Е., Васильева Н., Федотов В., 2013
Скачать и читать Практическое пособие по высшей математике, Баранова Е., Васильева Н., Федотов В., 2013
 

Высшая математика, Уравнения математической физики, Сборник задач с решениями, Крупин В.Г., Павлов А.Л., Попов Л.Г., 2011

Высшая математика, Уравнения математической физики, Сборник задач с решениями, Крупин В.Г., Павлов А.Л., Попов Л.Г., 2011.

  Пособие содержит задачи (по 30 вариантов каждой) из раздела высшей математики «Уравнения математической физики». Задачи охватывают следующие темы: задачи Коши для квазилинейных дифференциальных уравнений с частными производными первого порядка; метод разделения переменных решения краевых задач для уравнений Лапласа и Пуассона в различных областях; начально-краевые задачи для уравнения теплопроводности и волнового уравнения; краевые задачи для уравнения Гельмгольца и интегрального уравнения Фредгольма II рода. Каждая глава пособия начинается с изложения теоретических сведений и разбора примера решения конкретной задачи.
Предназначено для студентов старших курсов, обучающихся по техническим специальностям, а также аспирантов и преподавателей.

Высшая математика, Уравнения математической физики, Сборник задач с решениями, Крупин В.Г., Павлов А.Л., Попов Л.Г., 2011
Скачать и читать Высшая математика, Уравнения математической физики, Сборник задач с решениями, Крупин В.Г., Павлов А.Л., Попов Л.Г., 2011
 

Краткий курс высшей математики, Балдин К.В., 2015

Краткий курс высшей математики, Балдин К.В., 2015.
 
  Настоящий учебник содержит систематизированное изложение основ математики и написан на базе лекционных курсов, которые авторы преподавали в ряде вузов столицы.
Для студентов бакалавриата экономических вузов.

Краткий курс высшей математики, Балдин К.В., 2015
Скачать и читать Краткий курс высшей математики, Балдин К.В., 2015
 

Справочник по высшей математике, Выгодский М.Я., 2006

Справочник по высшей математике, Выгодский М.Я., 2006.

   Справочник включает весь материал, входящий в программу основного курса математики высших учебных заведений. Детальная рубрикация и подробный предметный указатель позволяют быстро получать необходимую информацию.
Книга окажет неоценимую помощь студентам, инженерам и научным работникам.

Справочник по высшей математике, Выгодский М.Я., 2006
Скачать и читать Справочник по высшей математике, Выгодский М.Я., 2006
 

Справочное пособие по высшей математике, Том 5, Дифференциальные уравнения в примерах и задачах, Боярчук А.К., Головач Г.П., 2001

Справочное пособие по высшей математике, Том 5, Дифференциальные уравнения в примерах и задачах, Боярчук А.К., Головач Г.П., 2001.

   «Справочное пособие по высшей математике» выходит в пяти томах и представляет собой новое, исправленное и существенно дополненное издание «Справочного пособия по математическому анализу» тех же авторов. В новом издании пособие охватывает три крупных раздела курса высшей математики — математический анализ, теорию дифференциальных уравнений, теорию функций комплексной переменной.
Том 5 охватывает все разделы учебных программ по дифференциальным уравнениям для университетов и технических вузов с углубленным изучением математики. Наряду с минимальными теоретическими сведениями в нем содержится более семисот детально разобранных примеров. Среди вопросов, нестандартных для такого рода пособий, следует отметить примеры по теории продолжимости решения задачи Копта, нелинейным уравнениям в частных производных первого порядка, некоторым численным методам решения дифференциальных уравнений.
Пособие предназначено для студентов, преподавателей и работников физико-математических, экономических и инженерно-технических специальностей, специалистов по прикладной математике, а также лиц, самостоятельно изучающих высшую математику.

Справочное пособие по высшей математике, Том 5, Дифференциальные уравнения в примерах и задачах, Боярчук А.К., Головач Г.П., 2001
Скачать и читать Справочное пособие по высшей математике, Том 5, Дифференциальные уравнения в примерах и задачах, Боярчук А.К., Головач Г.П., 2001
 

Справочное пособие по высшей математике, Том 4, Функции комплексного переменного, Теория и практик, Боярчук А.К., 2001

Справочное пособие по высшей математике, Том 4, Функции комплексного переменного, Теория и практик, Боярчук А.К., 2001.

   «Справочное пособие по высшей математике» выходит в пяти томах и представляет собой новое, исправленное и существенно дополненное издание «Справочного пособия по математическому анализу» тех же авторов. В новом издании пособие охватывает три крупных раздела курса высшей математики — математический анализ, теорию дифференциальных уравнений, теорию функций комплексной переменной.
Том 4 является логическим продолжением трех предыдущих ориентированных на практику томов и содержит более четырехсот подробно решенных задач, но при этом отличается более детальным изложением теоретических вопросов и может служить самостоятельным замкнутым курсом теории функций комплексного переменного. Помимо вопросов, обычно включаемых в курсы такого рода, в книге излагается ряд нестандартных — таких, как интеграл Ньютона—Лейбница и производная Ферма—Лагранжа.
Пособие предназначено для студентов, преподавателей и работников физико-математических, экономических и инженерно-технических специальностей, специалистов по прикладной математике, а также лиц, самостоятельно изучающих высшую математику.

Справочное пособие по высшей математике, Том 4, Функции комплексного переменного, Теория и практик, Боярчук А.К., 2001
Скачать и читать Справочное пособие по высшей математике, Том 4, Функции комплексного переменного, Теория и практик, Боярчук А.К., 2001
 

Справочное пособие по высшей математике, Том 3, Математический анализ, Кратные и криволинейные интегралы, Ляшко И.И., Боярчук А.К., Гай Я.Г., Головач Г.П., 2001

Справочное пособие по высшей математике, Том 3, Математический анализ, Кратные и криволинейные интегралы, Ляшко И.И., Боярчук А.К., Гай Я.Г., Головач Г.П., 2001.

   «Справочное пособие по высшей математике» выходит в пяти томах и представляет собой новое, исправленное и существенно дополненное издание «Справочного пособия по математическому анализу» тех же авторов. В новом издании пособие охватывает три крупных раздела курса высшей математики — математический анализ, теорию дифференциальных уравнений, теорию функций комплексной переменной.
Том 3 по содержанию соответствует второй половине второго тома «Справочного пособия по математическому анализу». В нем рассматриваются интегралы, зависящие от параметра, кратные и криволинейные интегралы, а также элементы векторного анализа.
Пособие предназначено для студентов, преподавателей и работников физико-математических, экономических и инженерно-технических специальностей, специалистов по прикладной математике, а также лиц, самостоятельно изучающих высшую математику.

Справочное пособие по высшей математике, Том 3, Математический анализ, Кратные и криволинейные интегралы, Ляшко И.И., Боярчук А.К., Гай Я.Г., Головач Г.П., 2001
Скачать и читать Справочное пособие по высшей математике, Том 3, Математический анализ, Кратные и криволинейные интегралы, Ляшко И.И., Боярчук А.К., Гай Я.Г., Головач Г.П., 2001
 

Справочное пособие по высшей математике, Том 2, Математический анализ, Ряды, функции векторного аргумента, Ляшко И.И., Боярчук А.К., Гай Я.Г., Головач Г.П., 2003

Справочное пособие по высшей математике, Том 2, Математический анализ, Ряды, функции векторного аргумента, Ляшко И.И., Боярчук А.К., Гай Я.Г., Головач Г.П., 2003.

   «Справочное пособие по высшей математике» выходит в пяти томах и представляет собой новое, исправленное и существенно дополненное издание «Справочного пособия по математическому анализу» тех же авторов. В новом издании пособие охватывает три крупных раздела курса высшей математики — математический анализ, теорию дифференциальных уравнений, теорию функций комплексной переменной.
Том 2 по содержанию соответствует первой половине второго тома «Справочного пособия по математическому анализу» и включает в себя теорию рядов и дифференциальное исчисление функций векторного аргумента.
Пособие предназначено для студентов, преподавателей и работников физико-математических, экономических и инженерно-технических специальностей, специалистов по прикладной математике, а также лиц, самостоятельно изучающих высшую математику.

Справочное пособие по высшей математике, Том 2, Математический анализ, Ряды, функции векторного аргумента, Ляшко И.И., Боярчук А.К., Гай Я.Г., Головач Г.П., 2003
Скачать и читать Справочное пособие по высшей математике, Том 2, Математический анализ, Ряды, функции векторного аргумента, Ляшко И.И., Боярчук А.К., Гай Я.Г., Головач Г.П., 2003
 
Показана страница 1 из 24