Виленкин

Все домашние работы по математике, 6 класс, 2016, к учебнику по математике за 6 класс, Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И.

Все домашние работы по математике, 6 класс, 2016, к учебнику по математике за 6 класс, Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И.

  Школьники могут построиться: по 90 : 2 = 45 школьников в две шеренги; по 90 : 5 = 18 школьников в 5 шеренг; 90 не делится на 11 без остатка; по 90 : 6 = 15 школьников в 5 ряду.

Все домашние работы по математике, 6 класс, 2016, к учебнику по математике за 6 класс, Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И.
Скачать и читать Все домашние работы по математике, 6 класс, 2016, к учебнику по математике за 6 класс, Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И.
 

Все домашние работы по математике, 5 класс, Зак С.М., 2013, к учебнику по математике за 5 класс, Виленкин Н.Я., Жохов В.И., 2013

Все домашние работы по математике, 5 класс, Зак С.М., 2013, к учебнику по математике за 5 класс, Виленкин Н.Я., Жохов В.И., 2013.

  Решебник к новому изданию учебника для 5 класса Н. Я. Виленкина соответствует ФГОС и включает в себя ответы на все задания. Он поможет учащимся эффективно овладеть программой по математике, а родителям — проконтролировать правильность выполнения домашних заданий.

Все домашние работы по математике, 5 класс, Зак С.М., 2013, к учебнику по математике за 5 класс, Виленкин Н.Я., Жохов В.И., 2013
Скачать и читать Все домашние работы по математике, 5 класс, Зак С.М., 2013, к учебнику по математике за 5 класс, Виленкин Н.Я., Жохов В.И., 2013
 

Комбинаторика, Виленкин Н.Я., Виленкин А.Н., Виленкин П.А., 2006

Комбинаторика, Виленкин Н.Я., Виленкин А.Н., Виленкин П.А., 2006.

В книге в популярной форме рассказывается о комбинаторике, методах решения комбинаторных задач, о рекуррентных соотношениях и производящих функциях. Материал частично захватывает области, выходящие за рамки элементарной математики, однако изложение доступно хорошему ученику средней школы. Книга содержит более 400 упражнений.
Книга будет полезна школьникам старших классов, интересующимся математикой, учителям, студентам первых курсов математических факультетов университетов и пединститутов, а также всем, сталкивающимся в своей практической работе с комбинаторными задачами.

4. Правила суммы и произведения.
Как мы увидим дальше, комбинаторные задачи бывают самых разных видов. Но большинство задач решается с помощью двух основных правил — правила суммы и правила произведения.
Правило суммы. Если на блюде лежат три яблока, то выбрать одно яблоко можно тремя способами (взять одно из трех яблок). Если на другом блюде лежат две груши, то выбрать одну грушу можно двумя способами (взять одну из двух груш). А выбрать один фрукт можно пятью способами
(выбирая из пяти фруктов — трех яблок и двух груш). Это и есть правило суммы, которое можно сформулировать так.

Комбинаторика, Виленкин Н.Я., Виленкин А.Н., Виленкин П.А., 2006

Скачать и читать Комбинаторика, Виленкин Н.Я., Виленкин А.Н., Виленкин П.А., 2006
 

Задачник-практикум по теории вероятностей с элементами комбинаторики и математической статистики, Виленкин Н.Я., Потапов В.Г., 1979

Задачник-практикум по теории вероятностей с элементами комбинаторики и математической статистики, Виленкин Н.Я., Потапов В.Г., 1979.

  Предлагаемая вниманию читателя книга является задачником-практикумом по курсу «Теория вероятностей». Она написана в соответствии с программой этого курса и предназначена для студентов-заочников физико-математических факультетов педагогических институтов.
Задачник состоит из трех глав, которые в свою очередь разбиты на параграфы. В начале каждого параграфа предельно кратко приводятся основные теоретические сведения, затем даются подробно разобранные типовые примеры и, наконец, предлагаются задачи для самостоятельного решения, снабженные ответами и указаниями. Задачник содержит также тексты лабораторных работ, выполнение которых поможет студенту-заочнику лучше усвоить основные понятия математической статистики.

Задачник-практикум по теории вероятностей с элементами комбинаторики и математической статистики, Виленкин Н.Я., Потапов В.Г., 1979
Скачать и читать Задачник-практикум по теории вероятностей с элементами комбинаторики и математической статистики, Виленкин Н.Я., Потапов В.Г., 1979
 

Математика, 5 класс, контрольные измерительные материалы Глазков Ю.А., Ахременкова В.И., Гаиашвили М.Я., 2014

Математика, 5 класс, контрольные измерительные материалы Глазков Ю.А., Ахременкова В.И., Гаиашвили М.Я., 2014.

Данное пособие полностью соответствует федеральному государственному образовательному стандарту (второго поколения).
Пособие является важным дополнением к учебнику Н. Я. Виленкина «Математика. 5 класс», рекомендованному Министерством образования и науки Российской Федерации и включенному в Федеральный перечень учебников.

Сборник содержит 33 теста и 14 контрольных работ для текущего и тематического контроля по курсу математики 5 класса. В сборнике приведены также ответы к заданиям.
Каждый тест представлен в 2 параллельных вариантах равной трудности. Тексты контрольных работ также даны в 2 вариантах равной трудности.

Все задания соответствуют программе общеобразовательных учреждений и требованиям ФГОС для средней школы.
Планируемое время выполнения каждого теста — до 15 минут, каждой контрольной работы - 20-30 минут. Регулярное выполнение работ с тестами и контрольных работ поможет учителям и учащимся своевременно получать информацию о полноте усвоения учебного материала.
Книга адресована учителям математики 5 класса и школьникам.

Примеры заданий:

5. Найдите значение выражения: 5 м 2 см 7 мм + 1 2 м 3 дм 8 мм. Результат выразите в миллиметрах.
6. Длина стороны АВ треугольника ABC равна 32 см, причем она меньше стороны ВС на 2 дм и больше стороны АС на 5 см. Найдите периметр треугольника ABC.
7. Через одну точку провели 32 различные прямые. На сколько частей эти прямые делят плоскость?

Математика, 5 класс, контрольные измерительные материалы Глазков Ю.А., Ахременкова В.И., Гаиашвили М.Я., 2014
Скачать и читать Математика, 5 класс, контрольные измерительные материалы Глазков Ю.А., Ахременкова В.И., Гаиашвили М.Я., 2014
 

Математика, Рабочая тетрадь для 6 класса, В 2-х ч, Ч. II., Миндюк М. Б., Рудницкая В.Н., 2014

Математика, Рабочая тетрадь для 6 класса, В 2-х ч, Ч. II., Миндюк М. Б., Рудницкая В.Н., 2014.


Настоящее издание - вторая часть учебного пособия «Математика: Рабочая тетрадь для 6 класса».
Пособие составлено в соответствии с действующей программой по математике для 6 класса массовой школы и предназначено для организации самостоятельной работы учащихся» обучающихся по учебнику: Виленкин И. Я., Чесноков А. С, Шварцбурд С. И., Жохов В. И. Математика - 6 класс.


Математика, Рабочая тетрадь для 6 класса, В 2-х ч, Ч. II., Миндюк М. Б., Рудницкая В.Н., 2014.

Скачать и читать Математика, Рабочая тетрадь для 6 класса, В 2-х ч, Ч. II., Миндюк М. Б., Рудницкая В.Н., 2014
 

Математика, алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа, 11 класс, учебник для учащихся общеобразовательных организаций (углублённый уровень), Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И., 2014

Математика, алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа, 11 класс, учебник для учащихся общеобразовательных организаций (углублённый уровень), Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И., 2014.

Учебник соответствует требованиям ФГОС среднего общего образования. В книге выделены типовые задачи для подготовки учащихся к Единому государственному экзамену, предложены алгоритмы их выполнения и варианты заданий для самоконтроля. В учебнике реализованы современные подходы к формированию проектно-исследовательских умений и ИКТ-компетенций. Темы индивидуальных проектов, предложенные в учебнике, входят в базовое академическое образование по экономике.

§ 1. Неопределённый интеграл.
1. Введение. С помощью дифференцирования можно, зная закон движения тела, найти его мгновенную скорость в любой момент времени. Часто возникает необходимость в решении обратной задачи: зная скорость прямолинейно движущегося тела в каждый момент времени, найти закон движения тела. Эти и аналогичные им задачи решаются с помощью операции интегрирования функций, которая обратна операции дифференцирования.
Раздел математики, в котором изучаются свойства операции интегрирования и её приложения к решению задач физики и геометрии, называют интегральным исчислением.
Напомним выведенные в главах 5 и 6 формулы для производных и вытекающие из них формулы для дифференциалов:

Математика, алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа, 11 класс, учебник для учащихся общеобразовательных организаций (углублённый уровень), Виленкин Н.Я., Ивашев-Мусатов О.С., Шварц-бурд С.И., 2014
Скачать и читать Математика, алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа, 11 класс, учебник для учащихся общеобразовательных организаций (углублённый уровень), Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И., 2014
 

Математика, алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа, 10 класс, учебник для учащихся общеобразовательных организаций (углублённый уровень), Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И., 2014

Математика, алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа, 10 класс, учебник для учащихся общеобразовательных организаций (углублённый уровень), Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И., 2014.

Учебник соответствует требованиям Федерального государственного стандарта среднего образования и предназначен для изучения курса алгебры и начал математического анализа в 10-м классе на углублённом уровне.
В учебнике выделены типовые задачи для полготовки учащихся к Единому государственному экзамену, предложены алгоритмы их выполнения и варианты заданий для самоконтроля, реализованы современные подходы к формированию проектно-исследовательских умений и ИКТ-компетенций. Темы индивидуальных проектов, предложенные в учебнике, входят в базовое академическое образование по экономике.


Фрагмент из книги:

3. Числовые множества и операции над ними. Любую совокупность действительных чисел называют числовым множеством. Само множество действительных чисел обозначают буквой R.
Другими примерами числовых множеств могут служить:
а) множество R, положительных действительных чисел;
б) множество R отрицательных действительных чисел;
в) множество Q, положительных рациональных чисел;
г) множество Q отрицательных рациональных чисел;
д) множество Q рациональных чисел;
е) множество Z целых чисел;
ж) множество N натуральных чисел;


Математика, алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа, 10 класс, учебник для учащихся общеобразовательных организаций (углублённый уровень), Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И., 2014
Скачать и читать Математика, алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа, 10 класс, учебник для учащихся общеобразовательных организаций (углублённый уровень), Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И., 2014
 
Другие статьи...

Показана страница 1 из 9