учебник по математике

Математика, 5 класс, Волович М.Б.

Математика, 5 класс, Волович М.Б.

  Вы продолжаете изучать математику. Это удивительная наука, которая, надеемся, поможет научиться правильно рассуждать, точно обосновывать свои мысли, разовьет воображение.
Изучая новый материал, вы должны будете пользоваться тем, что изучалось в начальной школе.

Математика, 5 класс, Волович М.Б.
Скачать и читать Математика, 5 класс, Волович М.Б.
 

Большая книга занимательных наук, Перельман Я.И.

Большая книга занимательных наук, Перельман Я.И.

  «Большая книга занимательных наук» - это уникальный сборник книг Я.И. Перельмана, в котором собраны классические пособия по алгебре, геометрии, физике. В нем вы найдете занимательные задачи и опыты, нестандартные головоломки и необычные сюжеты. Увлекательные физические викторины научат логически рассуждать и нестандартно мыслить. А любопытные примеры вызовут интерес у любого читателя.

Большая книга занимательных наук, Перельман Я.И.
Скачать и читать Большая книга занимательных наук, Перельман Я.И.
 

Билинейные и квадратичные формы, Булгаков Д.Н., Попов A.M., 2001

Билинейные и квадратичные формы, Булгаков Д.Н., Попов A.M., 2001.

  Вошедший в пособие раздел изучается в курсе алгебры на математических специальностях бакалавриата.
Для студентов I и II курсов бакалавриата по направлениям «Математика. Прикладная математика», «Прикладная математика. Информатика», «Математика. Компьютерные науки».
Подготовлено на кафедре математического анализа.

Билинейные и квадратичные формы, Булгаков Д.Н., Попов A.M., 2001
Скачать и читать Билинейные и квадратичные формы, Булгаков Д.Н., Попов A.M., 2001
 

Обратные прикладные задачи и MatLab, Сизиков В.С., 2011

Обратные прикладные задачи и MatLab, Сизиков В.С., 2011.

  Книга посвящена применению аппарата интегральных уравнений (ИУ) и программных средств системы MatLab к решению ряда прикладных задач томографии, иконики и спектроскопии. Изложены понятия прямых и обратных задач, задачи рентгеновской компьютерной томографии и ЯМР-томографии, задачи иконики — реконструкции искаженных (смазанных, дефокусированных и зашумленных) изображений и спектроскопии.
Для студентов, магистрантов, аспирантов и преподавателей ВУЗов, а также для специалистов по прикладной и вычислительной математике.

Обратные прикладные задачи и MatLab, Сизиков В.С., 2011
Скачать и читать Обратные прикладные задачи и MatLab, Сизиков В.С., 2011
 

(Не)совершенная случайность, Как случай управляет нашей жизнью, Млодинов Л., 2010

(Не)совершенная случайность, Как случай управляет нашей жизнью, Млодинов Л., 2010.

  В книге «(Не)совершенная случайность. Как случай управляет нашей жизнью» Млодинов запросто знакомит всех желающих с теорией вероятностей, теорией случайных блужданий, научной и прикладной статистикой, историей развития этих всепроникающих теорий, а также с тем, какое значение случай, закономерность и неизбежная путаница между ними имеют в нашей повседневной жизни.
Эта книга - отличный способ тряхнуть стариной и освежить в памяти кое-что из курса высшей математики, истории естественнонаучного знания, астрономии и статистики для тех, кто изучал эти дивные дисциплины в ВУЗах; понятно и доступно изложенные основы теории вероятностей и ее применимости в житейских обстоятельствах (с многочисленными примерами) для тех, кому не посчастливилось изучать их специально; наконец, профессиональный и дружелюбный подсказчик грызущим гранит соответствующих наук в данный момент.

(Не)совершенная случайность, Как случай управляет нашей жизнью, Млодинов Л., 2010
Скачать и читать (Не)совершенная случайность, Как случай управляет нашей жизнью, Млодинов Л., 2010
 

Методы численного анализа математических моделей, Галанин М.П., Савенков Е.Б., 2010

Методы численного анализа математических моделей, Галанин М.П., Савенков Е.Б., 2010.

  Книга отражает современный уровень развития численных методов и алгоритмов, ориентированных на применение современной вычислительной техники и позволяющих проводить количественный анализ математических моделей широкого класса реальных природных, социальных и технических объектов.
Изложены методы решения задач линейной алгебры, систем нелинейных алгебраических уравнений, интерполяция функций, методы численного интегрирования и дифференцирования, численные методы решения задачи Коши и краевых задач для систем обыкновенных дифференциальных уравнений.
Для студентов старших курсов технических университетов, аспирантов и инженеров. Может быть полезна преподавателям и научным работникам.

Методы численного анализа математических моделей, Галанин М.П., Савенков Е.Б., 2010
Скачать и читать Методы численного анализа математических моделей, Галанин М.П., Савенков Е.Б., 2010
 

Математика, Нестандартные методы решения неравенств и их систем, Коропец З.Л., Коропец А.А., Алексеева Т.А., 2012

Математика, Нестандартные методы решения неравенств и их систем, Коропец З.Л., Коропец А.А., Алексеева Т.А., 2012.

  Книга продолжает серию учебных пособий авторов «Математика абитуриенту» и посвящена современным нестандартным методам решения сложных неравенств, основанным на концепции равносильности математических высказывании.
Существенным отличием данной работы от имеющихся подобных изданий является то, что в ней представлено системное изложение методов и алгоритмов, позволяющих с помощью условий равносильности сводить решение целых классов сложных неравенств к решению простых рациональных неравенств классическим методом интервалов.

Математика, Нестандартные методы решения неравенств и их систем, Коропец З.Л., Коропец А.А., Алексеева Т.А., 2012
Скачать и читать Математика, Нестандартные методы решения неравенств и их систем, Коропец З.Л., Коропец А.А., Алексеева Т.А., 2012
 

Математика в контексте философских проблем, Яшин Б.Л., 2012

Математика в контексте философских проблем, Яшин Б.Л., 2012.

  Учебное пособие посвящено проблемам философии и методологии математики. В нем на материале истории математики рассматриваются проблемы становления философии математики, анализируются различные подходы к пониманию математики и ее развития, соотношение в математике рационального и иррационального, а также специфика математического познания, связанная с предметом, объектами и методами этой науки и пониманием в ней истины. В пособии выделен специальный раздел, в котором раскрывается взаимосвязь математики с философией, гуманитарной наукой и искусством, значимость для любого вида творчества своеобразной "диффузии" интеллектуального и чувственного, научного (математического) и художественного знания.
Книга представляет интерес для аспирантов и магистрантов, занимающихся проблемами математики, философии и методологии науки, преподавателей и студентов, для всех кого привлекают современные философские проблемы научного познания.

Математика в контексте философских проблем, Яшин Б.Л., 2012
Скачать и читать Математика в контексте философских проблем, Яшин Б.Л., 2012
 
Показана страница 97 из 195