учебник по математике

Избранное-60, Арнольд В.И., 1997

Избранное-60, Арнольд В.И., 1997.

   Идея этой книги возникла у ее издателя — В. Б. Филиппова. Довод о том, что такая книга нужна не столько автору, и даже не столько его ученикам и коллегам, но гораздо более широкому кругу математиков разных возрастов и просто культурным людям (особенно россиянам в эти дни, когда наука и вообще культура практически забыта явными и неявными властителями, опьяненными свободой доступа к общенародным богатствам), помог убедить Владимира Игоревича в необходимости настоящего издания. Он составил список своих основных работ, распределил их по темам, дал сводку результатов, выбрал работы, включенные в эту книгу.

Избранное-60, Арнольд В.И., 1997
Скачать и читать Избранное-60, Арнольд В.И., 1997
 

Уравнения математической физики, Тихонов А.Н., Самарский А.А.

Уравнения математической физики, Тихонов А.Н., Самарский А.А.

  В книге рассматриваются задачи математической физики, приводящие к уравнениям с частными производными. Расположение материала соответствует основным типам уравнений.
Изучение каждого типа уравнений начинается с простейших физических задач, приводящих к уравнениям рассматриваемого типа. Особое внимание уделяется математической постановке задач, строгому изложению решения простейших задач и физической интерпретации результатов. В каждой главе помещены задачи и примеры.
В основу книги положены лекции, читавшиеся на физическом факультете МГУ.

Уравнения математической физики, Тихонов А.Н., Самарский А.А.
Скачать и читать Уравнения математической физики, Тихонов А.Н., Самарский А.А.
 

Вариационное исчисление, Смирнов В.И., Крылов В.И., Канторович Л.В., 1933

Классическая динамика, Смирнов В.И., Крылов В.И., Канторович Л.В., 1963.

  Настоящая книга выпускается в качестве пособия для студентов математического и физического факультетов Ленинградского Университета. В ее основе лежат лекции, которые читались мною несколько лет тому назад студеитам-физикам. Объем этих лекций был значительно меньше объема выпускаемой книги, которая, как мы уже упоминали, предназначается не только для физиков, но и для математиков. В связи с этим пришлось добавить большой новый материал. Вся эта книга составлена Л. В. Канторовичем и В. И, Крыловым. Главы I, IV и V написаны Л. В. Канторовичем, а главы II, Ш и VI—В, И. Крыловым.

Вариационное исчисление, Смирнов В.И., Крылов В.И., Канторович Л.В., 1933
Скачать и читать Вариационное исчисление, Смирнов В.И., Крылов В.И., Канторович Л.В., 1933
 

Практический курс дифференциальных уравнений и математического моделирования, Ибрагимов Н.X., 2007

Практический курс дифференциальных уравнений и математического моделирования, Ибрагимов Н.X., 2007.

  Настоящий учебник охватывает обширный материал, включающий составление и анализ математических моделей различных процессов и явлений из области физики, техники, биологии, медицины и экономики. Рассматриваемые модели описываются обыкновенными дифференциальными уравнениями, уравнениями с частными производными и их системами. Излагаются классические и современные методы решения дифференциальных уравнений. В частности, широко представлен инвариантный подход, связанный с привлечением локальных групп Ли, который позволяет находить решения нелинейных задач в аналитической форме.
Учебник предназначен студентам, аспирантам и преподавателям естественно-научных факультетов классических, технических и педагогических университетов, а также специалистам в области чистой и прикладной математики.

Практический курс дифференциальных уравнений и математического моделирования, Ибрагимов Н.X., 2007
Скачать и читать Практический курс дифференциальных уравнений и математического моделирования, Ибрагимов Н.X., 2007
 

Интегрирование дифференциальных уравнений с помощью степенных рядов, Преображенский С.П., Тихомиров С.Р., 1987

Интегрирование дифференциальных уравнений с помощью степенных рядов, Преображенский С. П., Тихомиров С.Р., 1987.

  Предлагаемое расчётное задание по теме "Дифференциальные уравнения" включает в себя следующие разделы:
1. составление по заданной функции дифференциального уравнения и задачи Коши:
2. проверка выполнения условий теоремы существования и единственности решения задачи Коши;
3. решение дифференциального уравнения с помощью степенного ряда.

Интегрирование дифференциальных уравнений с помощью степенных рядов, Преображенский С.П., Тихомиров С.Р., 1987
Скачать и читать Интегрирование дифференциальных уравнений с помощью степенных рядов, Преображенский С.П., Тихомиров С.Р., 1987
 

Загадки и диковинки в мире чисел, Перельман Я.И.

Загадки и диковинки в мире чисел, Перельман Я.И.

  Занимательные рассказы о числах-великанах и числах - карликах, о системах счисления, об арифметических парадоксах и головоломках разнообразят школьную программу и сделают интересным ваш досуг.

Загадки и диковинки в мире чисел, Перельман Я.И.
Скачать и читать Загадки и диковинки в мире чисел, Перельман Я.И.
 

Многоугольники на решетках, Вавилов В.В., Устинов А.В., 2006

Многоугольники на решетках, Вавилов В.В., Устинов А.В., 2006.

  Решетки на плоскости являются тем замечательным мостом (с достаточно интенсивным двусторонним движением), который позволяет задачи алгебры, анализа, теории чисел переводить на геометрический язык и наоборот — задачи дискретной геометрии облекать в аналитическую форму. Основу книги составляют вопросы, связанные с возможностью расположения на решетках правильных или «полуправильных» многоугольников (только с равными сторонами или только с равными углами), формулой Пика для площади многоугольника на решетке и ее тесной связью с комбинаторной формулой Эйлера.
Книга написана на основе лекций, которые один из авторов читал в школе им. А.Н. Колмогорова при МГУ, на Малом мехмате МГУ, а также для студентов, аспирантов и преподавателей вузов как у нас в стране, так и за рубежом.

Многоугольники на решетках, Вавилов В.В., Устинов А.В., 2006
Скачать и читать Многоугольники на решетках, Вавилов В.В., Устинов А.В., 2006
 

Теория и методы принятия решений, Горюнов Ю.Ю., Горюнова Т.Ю., Дружинин Д.В., 2010

Теория и методы принятия решений, Горюнов Ю.Ю., Горюнова Т.Ю., Дружинин Д.В., 2010.

  Теория и методы принятия решений (ТиМПР) – это наука, которая математическими методами обосновывает выбор одного из нескольких решений задачи (проблемы). Следует подчеркнуть, что окончательное решение принимает лицо ответственное за принятие решений, причём его выбор не всегда совпадает с рекомендуемым.

Теория и методы принятия решений, Горюнов Ю.Ю., Горюнова Т.Ю., Дружинин Д.В., 2010
Скачать и читать Теория и методы принятия решений, Горюнов Ю.Ю., Горюнова Т.Ю., Дружинин Д.В., 2010
 
Показана страница 58 из 183