учебник по математике

Математические конструкции, От хижин к дворцам, Шаповалов А.В., 2015

Математические конструкции, От хижин к дворцам, Шаповалов А.В., 2015.

  Тринадцатая книжка серии «Школьные математические кружки» посвящена методам придумывания, построения и исследования математических конструкций. Она предназначена в основном для занятий со школьниками 6-8 классов, но может быть использована и для старших школьников. Продолжая книжку «Как построить пример», здесь рассмотрены более мощные приёмы работы с конструкциями, показывающие в том числе, как придумать и сконструировать доказательство. В книжку вошли разработки семи занятий математического кружка с подробно разобранными примерами различной сложности, задачами для самостоятельного решения и методическими указаниями для учителя. Для удобства использования заключительная часть книжки, как всегда, сделана в виде раздаточных материалов.
Книжка адресована школьным учителям математики и руководителям математических кружков.

Математические конструкции, От хижин к дворцам, Шаповалов А.В., 2015
Скачать и читать Математические конструкции, От хижин к дворцам, Шаповалов А.В., 2015
 

Арифметика, Алгоритмы, Сложность вычислений, Гашков С.Б., Чубариков В.Н., 2000

Арифметика, Алгоритмы, Сложность вычислений, Гашков С.Б., Чубариков В.Н., 2000.

  В книге (1-е изд.— 1986) впервые в отечественной литературе рассматривается связь вопросов арифметики с современными проблемами кибернетики. Она представляет собой сборник задач по арифметике и теории сложности арифметических алгоритмов, позволяющий получить систематические знания в этих областях математики. Рассматриваются классические проблемы, из которых возникли новые направления исследований, и задачи олимпиадного характера.
Для студентов вузов. Может быть полезна студентам университетов и педагогических вузов, а также для самостоятельной и научной работы на разных уровнях обучения.

Арифметика, Алгоритмы, Сложность вычислений, Гашков С.Б., Чубариков В.Н., 2000
Скачать и читать Арифметика, Алгоритмы, Сложность вычислений, Гашков С.Б., Чубариков В.Н., 2000
 

Что такое величина, Локшин А.А., Сибаева В.Ф., 2006

Что такое величина, Локшин А.А., Сибаева В.Ф., 2006.

  В пособии, адресованном старшеклассникам и студентам-первокурсникам педагогических вузов, рассказывается о важнейших величинах, с которыми непосредственно сталкивается человек в своем повседневном опыте. Особое внимание обращено на логику введения понятий длины, времени и массы.

Что такое величина, Локшин А.А., Сибаева В.Ф., 2006
Скачать и читать Что такое величина, Локшин А.А., Сибаева В.Ф., 2006
 

Численные методы, Формалев В.Ф., Ревизников Д.Л., 2006

Численные методы, Формалев В.Ф., Ревизников Д.Л., 2006.

  В учебнике представлены основные численные методы решения задач алгебры и анализа, теории приближений и оптимизации, задач для обыкновенных дифференциальных уравнений и уравнений математической физики. Систематически изложены методы конечных разностей, конечных и граничных элементов, методы исследования аппроксимации, устойчивости, сходимости, оценок погрешности. Каждый метод иллюстрируется подробно разобранным примером, даны упражнения для самостоятельной проработки.
Для студентов и аспирантов технических университетов, специализирующихся в области теплотехники, прикладной механики и прикладной математики. Книга ориентирована на двухсеместровый курс обучения.

Численные методы, Формалев В.Ф., Ревизников Д.Л., 2006
Скачать и читать Численные методы, Формалев В.Ф., Ревизников Д.Л., 2006
 

Введение в численные методы в задачах и упражнениях, Гулин А.В., Мажорова О.С., Морозова В.А., 2014

Введение в численные методы в задачах и упражнениях, Гулин А.В., Мажорова О.С., Морозова В.А., 2014.

   Пособие отражает опыт преподавания курса «Введение в численные методы» на факультете вычислительной математики и кибернетики МГУ имени М.В. Ломоносова. Наряду с конспективным изложением теоретического материала, пособие содержит значительное число примеров, задач и упражнений иллюстративного характера. Приведено решение большинства предлагаемых задач. Пособие рассчитано на студентов младших курсов, специализирующихся в области вычислительной математики и начинающих преподавателей. Оно может оказаться полезным студентам старших курсов, магистрантам и аспирантам, желающим самостоятельно закрепить свои навыки в области численных методов. Отдельные задачи и примеры можно использовать на семинарских занятиях и при подготовке заданий математического практикума.

Введение в численные методы в задачах и упражнениях, Гулин А.В., Мажорова О.С., Морозова В.А., 2014
Скачать и читать Введение в численные методы в задачах и упражнениях, Гулин А.В., Мажорова О.С., Морозова В.А., 2014
 

Элементарная математика с точки зрения высшей, Арифметика, Алгебра, Анализ, Том 1, Клейн Ф., 1987

Элементарная математика с точки зрения высшей, Арифметика, Алгебра, Анализ, Том 1, Клейн Ф., 1987.

  Книга выдающегося немецкого математика Феликса Клейна занимает особое место в популярной литературе по математике. Она в доходчивой и увлекательной форме рассказывает о тонких математических понятиях, о методике преподавания математики в школе (средней и высшей), об интересных фактах из истории науки, о собственных взглядах автора на математику и ее роль в прикладных вопросах.
Первый том посвящен вопросам арифметики, алгебры, анализа. Автор рассматривает понятие числа (целого, рационального, иррационального), особо останавливаясь на тех «мостиках», которыми можно соединить вузовское и школьное преподавание математики. Написанная в форме лекций для учителей, книга и за давностью лет не потеряла своей значимости, свежести, привлекательности.
Для студентов-математиков, преподавателей, научных работников и просто любителей математики.

Элементарная математика с точки зрения высшей, Арифметика, Алгебра, Анализ, Том 1, Клейн Ф., 1987
Скачать и читать Элементарная математика с точки зрения высшей, Арифметика, Алгебра, Анализ, Том 1, Клейн Ф., 1987
 

Математическая составляющая, Андреев Н.Н., Коновалов С.П., Панюнин Н.М., 2015

Математическая составляющая, Андреев Н.Н., Коновалов С.П., Панюнин Н.М., 2015.

  В сюжетах, собранных в книге, рассказывается как о математической «составляющей» крупнейших достижений цивилизации, так и о математической «начинке» привычных, каждодневных вещей. Все авторы — известные учёные.
Увлекательный, популярно-описательный стиль изложения делает материалы книги доступными для широкого круга читателей.

Математическая составляющая, Андреев Н.Н., Коновалов С.П., Панюнин Н.М., 2015
Скачать и читать Математическая составляющая, Андреев Н.Н., Коновалов С.П., Панюнин Н.М., 2015
 

Теория алгоритмов, Игошин В.И., 2016

Теория алгоритмов, Игошин В.И., 2016.

  Подробно изложены три формализации понятия алгоритма — машины Тьюринга, рекурсивные функции и нормальные алгоритмы Маркова, доказана их эквивалентность. Рассмотрены основные теоремы общей теории алгоритмов, теория разрешимых и перечислимых множеств, алгоритмически неразрешимые массовые проблемы, теория сложности вычислений и массовых проблем, алгоритмические проблемы математической логики и других разделов математики. Охарактеризованы взаимосвязи теории алгоритмов с компьютерами и информатикой.
Для студентов университетов, технических и педагогических вузов, обучающихся по специальностям «Математика», «Прикладная математика», «Математик-педагог», «Учитель математики» на уровнях бакалавриата, магистратуры, а также специалитета.

Теория алгоритмов, Игошин В.И., 2016
Скачать и читать Теория алгоритмов, Игошин В.И., 2016
 
Показана страница 49 из 203