учебник по математике

Дроби и проценты, 5, 6, 7 класс, Минаева С.С., 2012

Дроби и проценты, 5, 6, 7 класс, Минаева С.С., 2012.

   Сборник содержит свыше 300 текстовых задач по тематике, связанной с изучением дробей и процентов. В него включены задачи, решению которых в школе придается серьезное значение и которые включаются в итоговую проверку математической подготовки учащихся за курс основной школы. Задачи сгруппированы от простых до более сложных и представлены в шести вариантах. Первый вариант снабжен комментарием к решению. Ко всем задачам приводятся ответы и в ряде случаев подсказки к решению, что обеспечит организацию индивидуальной помощи учащемуся в его самостоятельной работе.

Дроби и проценты, 5-7 класс, Минаева С.С., 2012

Скачать и читать Дроби и проценты, 5, 6, 7 класс, Минаева С.С., 2012
 

Обратные тригонометрические функции, 10-11 класс, Фалин Г.И., Фалин А.И., 2012

Обратные тригонометрические функции, 10-11 класс, Фалин Г.И., Фалин А.И., 2012.

   В книге подробно изложена теория обратных тригонометрических функций. На примере задач, предлагавшихся на вступительных испытаниях по математике в МГУ им. М.В. Ломоносова (как основных, так и предварительных) и различных олимпиадах, изложены основные методы решения задач на обратные тригонометрические функции. Для самостоятельного решения в брошюре собраны задачи вступительных экзаменов на различные факультеты МГУ. Задачи сгруппированы по типам, что позволяет составить представление о характере и сложности экзаменационных задач на обратные тригонометрические функции. Ко всем задачам даны ответы. Книга будет полезна абитуриентам при подготовке к вступительным экзаменам по математике в ВУЗы и выпускникам средних школ, претендующим на высокую оценку по ЕГЭ.

Обратные тригонометрические функции, 10-11 класс, Фалин Г.И., Фалин А.И., 2012

Скачать и читать Обратные тригонометрические функции, 10-11 класс, Фалин Г.И., Фалин А.И., 2012
 

Комплексные числа, 9-11 класс, Глазков Ю.А., Варшавский И.К., Гаиашвили М.Я., 2012

Комплексные числа, 9-11 класс, Глазков Ю.А., Варшавский И.К., Гаиашвили М.Я., 2012.

   В пособии подробно с большим количеством примеров изложена теория комплексных чисел, действия с комплексными числами в алгебраической, тригонометрической и показательной формах, способы перехода от одной формы к другой. Большое внимание уделено геометрической интерпретации комплексных чисел, модуля и аргумента. В последней главе рассматривается применение комплексных чисел к решению геометрических задач. Каждая глава заканчивается задачами для самостоятельного решения и контрольной работой. К задачам приводятся ответы.
Книга предназначена учителям математики и старшеклассникам, изучающим комплексные числа.

Комплексные числа, 9-11 класс, Глазков Ю.А., Варшавский И.К., Гаиашвили М.Я., 2012

Скачать и читать Комплексные числа, 9-11 класс, Глазков Ю.А., Варшавский И.К., Гаиашвили М.Я., 2012
 

Теория вероятностей и математическая статистика, Лисьев В.П., 2006

Теория вероятностей и математическая статистика, Лисьев В.П., 2006.

   Курс «Теория вероятностей и математическая статистика» является составной частью цикла математических дисциплин, составляющих фундамент математического образования специалиста. В любой области человеческой деятельности имеют место случайные явления, которые не позволяют осуществить точный прогноз результатов этой деятельности. Теория вероятностей и математическая статистика изучают закономерности случайных явлений. Знание этих закономерностей помогает принимать решения в условиях неопределённости, направленные на достижение поставленных целей.
Курс «Теория вероятностей и математическая статистика» является основой для изучения последующих дисциплин, таких как «Эконометрика», «Статистические методы прогнозирования», «Исследование операций», «Методы оптимизации», «Теория массового обслуживания», «Теория восстановлений», «Основы актуарных расчётов» и т.д.

Теория вероятностей и математическая статистика, Лисьев В.П., 2006

Скачать и читать Теория вероятностей и математическая статистика, Лисьев В.П., 2006
 

Руководство к решению задач по высшей математике, Теории вероятностей и математической статистике, Лихолетов И.И., Мацкевич И.П., 1969

Руководство к решению задач по высшей математике, Теории вероятностей и математической статистике, Лихолетов И.И., Мацкевич И.П., 1969.

   Данная книга предназначена для студентов экономических ВУЗов. В данное пособие входят следующие разделы: элементы аналитической геометрии и векторной алгебры, введение в анализ, дифференциальное и интегральное исчисление, теория рядов, математическая статистика и теория вероятностей.
В начале каждой главы даны краткая теоретическая информация и примерные решения задач, с тем чтобы последующие задачи студенты могли решить самостоятельно. На вычислительные задачи даны ответы.
При подготовке пособия работа между авторами была рас­пределена следующим образом: И. И. Лихолетов написал первую и вторую части, И. П. Мацкевич написал третью часть и подобрал задачи к главам IV—VII, снабдив их ответами.

Руководство к решению задач по высшей математике, Теории вероятностей и математической статистике, Лихолетов И.И., Мацкевич И.П., 1969

Скачать и читать Руководство к решению задач по высшей математике, Теории вероятностей и математической статистике, Лихолетов И.И., Мацкевич И.П., 1969
 

Неопределенный интеграл, Практикум, Орловский Д.Г., 2006

Неопределенный интеграл, Практикум, Орловский Д.Г., 2006.

   Учебное пособие посвящено методам вычисления неопределенных интегралов. Техника вычисления интегралов наряду с техникой дифференцирования является важной составной частью фундаментального образования математиков и физиков-теоретиков. Поэтому наличие пособий по данной тематике представляется актуальным. Особенностью данного пособия является то, что все рассматриваемые задачи приводятся с решениями, поэтому оно может быть использовано для самостоятельного изучения.
Настоящее пособие предназначено для студентов университетов, технических и педагогических ВУЗов, ВУЗов с углубленным изучением математики. Оно может быть также использовано преподавателями при проведении семинарских занятий по рассматриваемой в пособии теме.

Неопределенный интеграл, Практикум, Орловский Д.Г., 2006

Скачать и читать Неопределенный интеграл, Практикум, Орловский Д.Г., 2006
 

Дифференциальные уравнения в задачах и примерах, Пушкарь Е.А., 2007

Дифференциальные уравнения в задачах и примерах, Пушкарь Е.А., 2007.

   В учебно-методическом пособии рассматриваются методы и приемы решения обыкновенных дифференцированных уравнений. Оно соответствует программе дисциплины «Дифференциальные уравнения» для студентов второго и третьего курсов.
Предназначено для студентов высших учебных заведений направления «Прикладная математика и информатика» (010500) и специальности «Математическое обеспечение и администрирование информационных систем» (010503). Будет полезно студентам инженерных специальностей, желающих самостоятельно научиться решать дифференциальные уравнения, а также студентам дистанционной формы обучения.

Дифференциальные уравнения в задачах и примерах, Пушкарь Е.А., 2007

Скачать и читать Дифференциальные уравнения в задачах и примерах, Пушкарь Е.А., 2007
 

Дифференциальные уравнения, Пушкарь Е.А., 2007

Дифференциальные уравнения, Пушкарь Е.А., 2007.

    Учебное пособие предназначено для студентов высших учебных заведений направления «Прикладная математика и информатика» (010500) и специальности «Математическое обеспечение и администрирование информационных систем» (010503) и соответствует программе дисциплины «Дифференциальные уравнения»

Дифференциальные уравнения, Пушкарь Е.А., 2007

Скачать и читать Дифференциальные уравнения, Пушкарь Е.А., 2007
 
Показана страница 148 из 184