учебник по математике

Обобщенные решения законов сохранения, Тупчиев В.А., 2006

Обобщенные решения законов сохранения, Тупчиев В.А., 2006.

Книга посвящена теории квазилинейных систем дифференциальных уравнений, описывающих законы сохранения различных физических процессов с учетом диссипации и без нее.
В основе ее лежит специальный курс лекций «Обобщенные решения законов сохранения», читавшийся автором на протяжении ряда лет студентам специальности «Прикладная математика» в Обнинском государственном университете атомной энергетики.
Для научных работников, преподавателей, аспирантов и студентов, занимающихся дифференциальными уравнениями, математической физикой, математическими исследованиями в механике сплошной среды.

Обобщенные решения законов сохранения, Тупчиев В.А., 2006
Скачать и читать Обобщенные решения законов сохранения, Тупчиев В.А., 2006
 

Многочлены, Прасолов В.В., 2003

Многочлены, Прасолов В.В., 2003.

В книге изложены основные результаты исследований по теории многочленов, как классические, так и современные. Большое внимание уделено 17-й проблеме Гильберта о представлении неотрицательных многочленов суммами квадратов рациональных функций и ее обобщениям. Теория Галуа обсуждается прежде всего с точки зрения теории многочленов, а не с точки зрения общей теории расширения полей.
Для студентов, аспирантов, научных работников - математиков и физиков.

Многочлены, Прасолов В.В., 2003
Скачать и читать Многочлены, Прасолов В.В., 2003
 

Математический анализ, Интегралы, Аксёнов А.П., 2000

Математический анализ, Интегралы, Аксёнов А.П., 2000.

Пособие соответствует государственному стандарту дисциплины «Математический анализ» направления бакалаврской подготовки 510200 «Прикладная математика и информатика».
Содержит изложение теоретического материала в соответствии с действующей программой по темам: «Ряды Фурье», «Интеграл Фурье», «Суммирование расходящихся рядов». Приведено большое количество примеров. Изложено применение методов Чезаро и Абеля – Пуассона в теории рядов. Рассмотрен вопрос о гармоническом анализе функций, заданных эмпирически.
Предназначено для студентов физико-механического факультета специальностей 010200, 010300, 071100, 210300, а также для преподавателей, ведущих практические занятия.

Математический анализ, Интегралы, Аксёнов А.П., 2000
Скачать и читать Математический анализ, Интегралы, Аксёнов А.П., 2000
 

Математическая физика, Методы решения задач, Панов Ю.Д., Егоров Р.Ф., 2005

Математическая физика, Методы решения задач, Панов Ю.Д., Егоров Р.Ф., 2005.

Предлагаемое учебное пособие предназначено для студентов физического факультета университета, изучающих курс "Линейные и нелинейные уравнения физики. Методы математической физики ", и может быть использовано при подготовке к практическим занятиям по данному курсу и самостоятельной работе над некоторыми разделами математической физики. Пособие написано на основе многолетнего опыта проведения практических занятий и лекций по методам математической физики на физическом факультете Уральского государственного университета. Материал, изложенный в пособии, несколько превосходит по объему и подробности изложения реальный учебный план практических занятий.

Математическая физика, Методы решения задач, Панов Ю.Д., Егоров Р.Ф., 2005
Скачать и читать Математическая физика, Методы решения задач, Панов Ю.Д., Егоров Р.Ф., 2005
 

Лекции по теории вероятностей и математической статистике, Соловьёв А.А., 2003

Лекции по теории вероятностей и математической статистике, Соловьёв А.А., 2003.

   Закономерные события это события, которые всегда происходят как только создаются определенные условия. Закономерные же явления - это система закономерных событий.
Математика, как и любая другая наука, изучает математические модели закономерных явлений окружающею нас мира.
Случайные же события - это события, которые при одних и тех же условиях происходят или нет. Массовые случайные события это события, для которых можно создать одни и те же условия, при которых случайное событие может произойти или нет.

Лекции по теории вероятностей и математической статистике, Соловьёв А.А., 2003
Скачать и читать Лекции по теории вероятностей и математической статистике, Соловьёв А.А., 2003
 

Курс лекций по математическому анализу, Бесов О.В., 2004

Курс лекций по математическому анализу, Бесов О.В., 2004.

   Изложение указанных в заглавии разделов курса математического анализа, изучаемых в МФТИ в первом семестре, отличается от изложения этих вопросов в учебниках и учебных пособиях.

Курс лекций по математическому анализу, Бесов О.В., 2004
Скачать и читать Курс лекций по математическому анализу, Бесов О.В., 2004
 

Дифференциальное исчисление, Теория и приложения, Тихомиров В.М., 2002

Дифференциальное исчисление, Теория и приложения, Тихомиров В.М., 2002.

   Дифференциальное исчисление, возникшее более трехсот лет назад в работах Ньютона и Лейбница, открыло новую эпоху в развитии науки. Оно послужило основой для создания современной математики и нашло многочисленные применения в естествознании и технике.
В этой брошюре вводятся основные понятия дифференциального исчисления: предел, производная, непрерывность функции, и рассказывается о применении этих понятий в механике, биологии, социологии и других областях. Читатель также узнает о том, как менялись представления ученых о дифференциальном исчислении в течение последних трех столетий.
Брошюра рассчитана на широкий круг читателей, интересующихся математикой: школьников старших классов, студентов младших курсов, учителей.

Дифференциальное исчисление, Теория и приложения, Тихомиров В.М., 2002
Скачать и читать Дифференциальное исчисление, Теория и приложения, Тихомиров В.М., 2002
 

Введение в статистическую теорию обратных задач, Теребиж В.Ю., 2005

Введение в статистическую теорию обратных задач, Теребиж В.Ю., 2005.

  В книге изложена теория обратных задач, часто встречающихся в физике и технике. Основываясь на понятиях математической статистики, анализируется ряд известных методов обращения информации, в частности: оптимальная фильтрация Колмогорова—Винера, метод максимума энтропии, регуляризация Филлипса—Тихонова и восстановление изображений с помощью итерационных процедур. Показано, что последовательное применение методов статистики с учетом априорной информации, реально доступной исследователю, позволяет получить устойчивые и эффективные решения обратных задач. Теоретическое рассмотрение сопровождается большим числом примеров; приведены сводки расчетных формул. В качестве приложений изучаются проблема предельной разрешающей силы оптических приборов, классическая задача непараметрического оценивания спектра мощности временного ряда и актуальная в последние годы фазовая проблема.
Книга рассчитана на специалистов различных областей науки и техники. Она доступна студентам университетов и технических учебных заведений.

Введение в статистическую теорию обратных задач, Теребиж В.Ю., 2005
Скачать и читать Введение в статистическую теорию обратных задач, Теребиж В.Ю., 2005
 
Показана страница 118 из 175