учебник по математике

Высшая математика в упражнениях и задачах, Часть 2, Данко П.Е., Попов А.Г., Кожевникова Т.Я., 1986

Высшая математика в упражнениях и задачах, Часть 2, Данко П.Е., Попов А.Г., Кожевникова Т.Я., 1986.

   Содержание II части охватывает следующие разделы программы: кратные и криволинейные интегралы, ряды, дифференциальные уравнения, теорию вероятностей, теорию функций комплексного переменного, операционное исчисление, методы вычислений, основы вариационного исчисления.
В каждом параграфе приводятся необходимые теоретические сведения. Типовые задачи даются с подробными решениями. Имеется большое количество задач для самостоятельной работы.

Высшая математика в упражнениях и задачах, Часть 2, Данко П.Е., Попов А.Г., Кожевникова Т.Я., 1986
Скачать и читать Высшая математика в упражнениях и задачах, Часть 2, Данко П.Е., Попов А.Г., Кожевникова Т.Я., 1986
 

Высшая математика в упражнениях и задачах, Часть 1, Данко П.Е., Попов А.Г., Кожевникова Т.Я., 1986

Высшая математика в упражнениях и задачах, Часть 1, Данко П.Е., Попов А.Г., Кожевникова Т.Я., 1986.

   Содержание I части охватывает следующие разделы программы: аналитическую геометрию, основы линейной алгебры, дифференциальное исчисление функций одной и нескольких переменных, интегральное исчисление функций одной независимой переменной, элементы линейного программирования.
В каждом параграфе приводятся необходимые теоретические сведения. Типовые задачи даются с подробными решениями. Имеется большое количество задач для самостоятельной работы.

Высшая математика в упражнениях и задачах, Часть 1, Данко П.Е., Попов А.Г., Кожевникова Т.Я., 1986
Скачать и читать Высшая математика в упражнениях и задачах, Часть 1, Данко П.Е., Попов А.Г., Кожевникова Т.Я., 1986
 

Элементарный курс теории вероятностей и математической статистики, Бородин А.Н., 1999

Элементарный курс теории вероятностей и математической статистики, Бородин А.Н., 1999.

   Учебник содержит систематическое изложение основных разделов элементарного курса теории вероятностей и математической статистики. К традиционным разделам добавлен один новый — `Процедура рекуррентного оценивания`, ввиду особой важности этой процедуры для приложений. Теоретический материал сопровождается большим количеством примеров и задач из разных областей знаний.

Элементарный курс теории вероятностей и математической статистики, Бородин А.Н., 1999
Скачать и читать Элементарный курс теории вероятностей и математической статистики, Бородин А.Н., 1999
 

Сборник индивидуальных заданий по высшей математике, Часть 2, Рябушко, 1991

Сборник индивидуальных заданий по высшей математике, Часть 2, Рябушко А.П., 1991.

   Книга является составной частью комплекса учебных пособий по курсу высшей математики, направленных на развитие и активизацию самостоятельной работы студентов ВУЗов. Содержатся теоретические сведения и наборы задач для аудиторных и индивидуальных заданий по следующим разделам: комплексные числа, неопределенные и определенные интегралы, функции нескольких переменных и обыкновенные дифференциальные уравнения.
Для студентов инженерно-технических специальных ВУЗов.

Сборник индивидуальных заданий по высшей математике, Часть 2, Рябушко А.П., 1991
Скачать и читать Сборник индивидуальных заданий по высшей математике, Часть 2, Рябушко, 1991
 

Конспект лекций по теории вероятностей и математической статистике, Письменный, 2004

Конспект лекций по теории вероятностей и математической статистике, Письменный Д.Т., 2004.

   Настоящая книга представляет собой курс лекций по теории вероятностей, случайным процессам и математической статистике.
Первая часть книги содержит основные понятия и теоремы теории вероятностей, такие как случайные события, вероятность, случайные функции, корреляция, условная вероятность, закон больших чисел и предельные теоремы. В отдельной главе приведены основные понятия теории случайных процессов (стационарный процесс, марковский процесс, теорема Винера-Хинчина).
Вторая часть книги посвящена математической статистике, в ней излагаются основы выборочного метода, теории оценок и проверки гипотез. Изложение теоретического материала сопровождается рассмотрением большого количества примеров и задач, ведется на доступном, по возможности строгом языке.
Предназначена для студентов экономических и технических ВУЗов.

Конспект лекций по теории вероятностей и математической статистике, Письменный Д.Т., 2004
Скачать и читать Конспект лекций по теории вероятностей и математической статистике, Письменный, 2004
 

Многомерный статистический анализ и временные ряды, Кендалл М., Стюарт А., 1976

Многомерный статистический анализ и временные ряды, Кендалл М., Стюарт А., 1976.

   Книга является последним томом трехтомного курса статистики М.Кендалла и А.Стьюарта, первый том которого вышел в 1966 г. под названием `Теория распределений`, а второй - в 1973 г. под названием `Статистические выводы и связи`. В книге содержатся сведения по дисперсионному анализу, планированию экспериментов, теории выборочных обследований, многомерному анализу и временным рядам. Как и первые два тома, книга содержит много практических рекомендаций и примеров их применения, а изложение сочетает более или менее подробный вывод основных результатов с относительно кратким перечислением большого количества более частных сведений.
Книга будет представлять интерес для студентов и аспирантов, специализирующихся в области математической статистики, а также для широкого круга научных работников, имеющих дело с ее приложениями.

Многомерный статистический анализ и временные ряды, Кендалл М., Стюарт А., 1976
Скачать и читать Многомерный статистический анализ и временные ряды, Кендалл М., Стюарт А., 1976
 

Практический курс по уравнениям математической физики, Пикулин В.П., Похожаев С.И., 2004

Практический курс по уравнениям математической физики, Пикулин В.П., Похожаев С.И., 2004.

   Книга представляет собой изложение (демонстрацию) основных методов решения некоторых задач классической математической физики. Рассматриваются метод Фурье, метод конформных отображений, метод функции Грина для уравнений Лапласа и Пуассона на плоскости и в пространстве, способы решения краевых задач для уравнений Гельмгольца, метод возмущений, методы интегральных преобразований (Фурье, Лапласа, Ханкеля) при решении нестационарных краевых задач, а также другие методы для решения эллиптических, гиперболических и параболических задач. В конце каждой главы приводятся задачи для самостоятельного решения и ответы к ним.
Для студентов высших учебных заведений, научных работников и инженеров.

Практический курс по уравнениям математической физики, Пикулин В.П., Похожаев С.И., 2004
Скачать и читать Практический курс по уравнениям математической физики, Пикулин В.П., Похожаев С.И., 2004
 

Обратные и некорректные задачи, Кабанихин С.И., 2009

Обратные и некорректные задачи, Кабанихин С.И., 2009.

В учебнике изложены методы исследования и решения обратных и некорректных задач линейной алгебры, интегральных и операторных уравнений, интегральной геометрии, спектральных обратных задач и обратных задач рассеяния; рассмотрены линейные некорректные задачи и коэффициентные обратные задачи для гиперболических, параболических и эллиптических уравнений; дан обширный справочный материал.
Для студентов учреждений высшего профессионального образования. Может быть полезен аспирантам, стажерам, инженерам, научным работникам, а также преподавателям ВУЗов.

Обратные и некорректные задачи, Кабанихин С.И., 2009
Скачать и читать Обратные и некорректные задачи, Кабанихин С.И., 2009
 
Показана страница 117 из 175