Савин

Спортивные игры, Техника, Тактика, Методика обучения, Железняк Ю.Д., Портнов Ю.М., Савин В.П., Лексаков А.В., 2004

Спортивные игры, Техника, Тактика, Методика обучения, Железняк Ю.Д., Портнов Ю.М., Савин В.П., Лексаков А.В., 2004.

  В учебнике излагаются теоретико-методические основы спортивных игр, их роль и место в системе физического воспитания и спорта, в профессиональном физкультурном образовании; представлена методика обучения базовым спортивным играм: волейболу, баскетболу, гандболу, футболу, хоккею, теннису. Для студентов педагогических ВУЗов, обучающихся по специальности 033100 - Физическая культура. Может быть полезен преподавателям, учителям физкультуры и тренерам команд по спортивным играм.

Спортивные игры, Техника, Тактика, Методика обучения, Железняк Ю.Д., Портнов Ю.М., Савин В.П., Лексаков А.В., 2004
Скачать и читать Спортивные игры, Техника, Тактика, Методика обучения, Железняк Ю.Д., Портнов Ю.М., Савин В.П., Лексаков А.В., 2004
 

Занимательная математика в рассказах для детей, Савин А.П., Станцо В.В., Котова А.Ю., 2011

Занимательная математика в рассказах для детей, Савин А.П., Станцо В.В., Котова А.Ю., 2011.
 
  "Занимательная математика в рассказах для детей" - книга, в которой в форме рассказов повествуется об истории развития математики и о великих ученых, о различных логических и компьютерных играх. Издание снабжено предметно-именным указателем.

Занимательная математика в рассказах для детей, Савин А.П., Станцо В.В., Котова А.Ю., 2011
Скачать и читать Занимательная математика в рассказах для детей, Савин А.П., Станцо В.В., Котова А.Ю., 2011
 

Я познаю мир, Детская энциклопедия, Математика, Савин А.П., Станцо В.В., Котова А.Ю., 1998

Я познаю мир, Детская энциклопедия, Математика, Савин А.П., Станцо В.В., Котова А.Ю., 1998.

 «Математика» - очередной том новой популярной энциклопедии для детей издательства ACT «Я познаю мир».
Об истории развития математики и великих ученых, о различных логических и компьютерных играх и задачах и даже о том в каком банке лучше хранить деньги рассказывают юным читателям авторы.
Об уникальности и неординарности книги говорит тот факт, что весь авторский коллектив уже много лет сотрудничает в популярном математическом журнале для детей - «Квант».
Издание хорошо иллюстрировано, снабжено предметноименным указателем, что позволяет использовать его как справочник. Рекомендуется в качестве дополнительного пособия для учащихся младших и средних классов школ, лицеев и гимназий.

Я познаю мир, Детская энциклопедия, Математика, Савин А.П., Станцо В.В., Котова А.Ю., 1998
Скачать и читать Я познаю мир, Детская энциклопедия, Математика, Савин А.П., Станцо В.В., Котова А.Ю., 1998
 

Самарские олимпиады, Андреев А.А., Люлев А.И., Савин А.Н., Саушкин М.Н., 1998

Самарские олимпиады, Андреев А.А., Люлев А.И., Савин А.Н., Саушкин М.Н., 1998.

Сборник задач может служить пособием для самостоятельной подготовки к олимпиадам по математике.
Сборник составлен из задач, предлагавшихся в последние годы на математических олимпиадах г. Самары: САММАТ, университета Наяновой, олимпиады СамГУ и СамГТУ для выпускников. К большинству задач даны краткие указания. Наиболее сложные задачи снабжены подробными решениями.

Задачник может быть рекомендован учащимся старших классов, преподавателям математики, а также лицам, интересующимся нестандартными задачами.


Самарские олимпиады, Андреев А.А., Люлев А.И., Савин А.Н., Саушкин М.Н., 1998
Скачать и читать Самарские олимпиады, Андреев А.А., Люлев А.И., Савин А.Н., Саушкин М.Н., 1998
 

Математика, Принцип Дирихле, Выпуск 1, Андреев А.А., Горелов Г.Н., Люлев А.И., Савин А.Н., 1997

Математика, Принцип Дирихле, Выпуск 1, Андреев А.А., Горелов Г.Н., Люлев А.И., Савин А.Н., 1997.

  При решении многих задач используется логический метод рассуждения — "от противного". В данной брошюре рассмотрена одна из его форм — принцип Дирихле. Этот принцип утверждает, что если множество из N элементов разбито на п непересекающихся частей, не имеющих общих элементов, где N>n, то, по крайней мере, в одной части будет более одного элемента. Принцип назван в честь немецкого математика П.Г.Л. Дирихле (1805-1859), который успешно применял его к доказательству арифметических утверждений.
По традиции принцип Дирихле объясняют на примере "зайцев и клеток". Если мы хотим применить принцип Дирихле при решении конкретной задачи, то нам предстоит разобраться, что в ней — "клетки", а что — "зайцы". Это обычно является самым трудным этапом в доказательстве. Цель этого сборника — познакомить читателя с некоторыми изюминками решения задач на принцип Дирихле. В конце сборника приведены задачи для самостоятельного решения, что дает возможность читателю попробовать свои силы в решении подобных задач.
Книга предназначена главным образом для старшеклассников, однако школьники младших классов также несомненно найдут в ней много полезного.

Математика, Принцип Дирихле, Выпуск 1, Андреев А.А., Горелов Г.Н., Люлев А.И., Савин А.Н., 1997
Скачать и читать Математика, Принцип Дирихле, Выпуск 1, Андреев А.А., Горелов Г.Н., Люлев А.И., Савин А.Н., 1997
 

Математика, Функциональное уравнения, Андреев А.А., Кузьмин Ю.Н., Савин А.Н., 1997

Математика, Функциональное уравнения, Андреев А.А., Кузьмин Ю.Н., Савин А.Н., 1997.


Цель этой брошюры - познакомить читателя с некоторыми методами решения функциональных уравнений. Книга предназначена для учащихся старших классов, а также окажет неоценимую помощь в работе школьного математического кружка.

Крупнейшие математики (в их числе Эйлер, Гаусс, Коши, Даламбер, Абель, Лобачевский, Дарбу, Гильберт) неоднократно обращались к функциональным уравнениям и уделяли много внимания разработке методов их решения. Под выражением "решить функциональное уравнение" понимается нахождение неизвестной функции, при подстановке которой в исходное функциональное уравнение оно превращается в тождество (если неизвестных функций несколько, то необходимо найти их все). Ещё раз подчеркнём, что соотношения, задающие функциональные уравнения, являются тождествами относительно некоторых переменных, а уравнениями их называют постольку, поскольку неизвестные функции - искомые.


Математика,Функциональное уравнения, Андреев А.А., Кузьмин Ю.Н., Савин А.Н., 1997

Скачать и читать Математика, Функциональное уравнения, Андреев А.А., Кузьмин Ю.Н., Савин А.Н., 1997
 

Энциклопедический словарь юного математика, Савин А.П., 1989

Энциклопедический словарь юного математика, Савин А.П., 1989.

    Словарь поможет читателю получить сведения об истории развития математической науки, основных направлениях ее приложений на практике, познакомит с математическими понятиями.
Одна из задач книги — заинтересовать школьников этой древней и важнейшей ныне наукой, помочь в формировании логического мышления, в усвоении учебной программы. В словаре рассказывается о выдающихся ученых-математиках, приведены занимательные математические задачи.
Для школьников среднего и старшего возраста.

Энциклопедический словарь юного математика, Савин А.П., 1989

Скачать и читать Энциклопедический словарь юного математика, Савин А.П., 1989
 

Занимательно о физике и математике, Кротов С.С., Савин А.П., 1987

Занимательно о физике и математике, Кротов С.С., Савин А.П., 1987.

    Раздел «Квант для младших школьников» вызвал большой интерес у широкой читательской аудитории. Издание наиболее оригинальных статей и задач и легло в основу этого сборника.
Обсуждается физический смысл некоторых интересных явлений, описывается ряд изящных опытов, которые могут быть воспроизведены в домашних условиях. Математические статьи рассказывают о любопытных фактах, учат читателя логически мыслить. В книгу включено около 100 задач по различным темам математики и физики, решение которых требует, как правило, не специальных знаний, а наблюдательности и сообразительности.
Для школьников, интересующихся физикой и математикой.

Занимательно о физике и математике, Кротов С.С., Савин А.П., 1987

Скачать и читать Занимательно о физике и математике, Кротов С.С., Савин А.П., 1987
 
Показана страница 2 из 3