прикладная математика

Численное решение задач прикладной математики, часть 1, модуль 2, расчеты диффузионных процессов, линейная и нелинейная конвекция, 2010

Численное решение задач прикладной математики, часть 1, модуль 2, расчеты диффузионных процессов, линейная и нелинейная конвекция, 2010.

Нелинейные задачи (с преобладанием конвекции).
Линейные задачи с преобладанием конвекции могут приводить к появлению фиктивных членов с высшими производными, которые могут иметь такой же порядок как и члены уравнения с определяющими свойствами. Установление связи членов высокого порядка с процессами диффузии и диссипации позволяет строить численные схемы с учетом физических свойств задачи.

Численное решение задач прикладной математики, часть 1, модуль 2, расчеты диффузионных процессов, линейная и нелинейная конвекция, 2010

Скачать и читать Численное решение задач прикладной математики, часть 1, модуль 2, расчеты диффузионных процессов, линейная и нелинейная конвекция, 2010
 

Численное решение задач прикладной математики, Батищев В.А., 2010

Численное решение задач прикладной математики, Батищев В.А., 2010.

Модуль 1.
Конечные элементы и спектральные методы.
Принципы методов взвешенных невязок. Метод подобластей. Метод коллокаций Метод наименьших квадратов. Метод Галеркина. Сравнение методов на примере дифференциального уравнения. Метод конечных объемов для уравнении первого порядка. Метод конечных объемов для уравнений в частных производных второго порядка.
Метод конечных элементов (МКЭ). Линейная интерполяция. Квадратичная интерполяция. Двумерная билинейная интерполяция Двумерная биквадратная интерполяция.
Спектральный метод. Применение к уравнению диффузии. Псевдоспектральный метод.
Общие численные методы. Метод Ньютона. Прямые методы решения линейных систем. Итерационные методы (методы Якоби, Гаусса-Зейделя, метод последовательной верхней релаксации). Ускорение сходимости.

Численное решение задач прикладной математики, Батищев В.А., 2010

Скачать и читать Численное решение задач прикладной математики, Батищев В.А., 2010
 

Лекции по теоретической механике - Павленко Ю.Г. - 2002

Лекции по теоретической механике - Павленко Ю.Г. - 2002

   Цель учебника - изложить фундаментальные принципы и методы теоретической механики, научить читателя активно применять современный математический аппарат для решения конкретных задач динамики, подготовить к анализу широкого круга проблем, изучаемых в курсе теоретической физики. Основное внимание уделено исследованию классических и современных задач механики в рамках лагранжева и гамильтонова подходов, методам гамильтонизации систем нелинейных уравнений и новым методам интегрирования канонических систем.
   Для студентов физических и механико-математических факультетов университетов, студентов втузов, обучающихся по специальностям Механика и Прикладная математика, преподавателей и аспирантов.

lekcii_po_teor_meh

Скачать и читать Лекции по теоретической механике - Павленко Ю.Г. - 2002