Прасолов

Геометрия, 8 класс, Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В., 2011

Геометрия 8 класс, Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В., 2011.

Параллельность

Представим себе две прямые на плоскости Они могут пересекаться, в частности, под прямым углом, но могут и не пересекаться Непересекающиеся прямые называются параллельными Параллельные прямые (а точнее, отрезки параллельных прямых) мы видим на каждом шагу — два противоположных края прямоугольного стола, строчки текста, две рельсы, нотный стан и т д Параллельные прямые используются, например, в архитектуре и технике, столярном деле и кройке, физике и черчении В геометрии параллельные прямые играют не меньшую роль, чем перпендикулярные В этой главе мы будем изучать свойства параллельных прямых и в связи с этим обсудим очень важный вопрос — об аксиомах геометрии

Многоугольники
 
До сих пор мы рассматривали самые простые многоугольники — треугольники и прямоугольники В этой главе перейдём к изучению свойств более сложных многоугольников: различных четырёхугольников, а также правильных многоугольников Многие из этих фигур обладают симметрией Симметрия играет важную роль не только в геометрии, но и в других науках, в архитектуре, искусстве, технике Симметричные предметы вы не раз видели в природе и окружающей обстановке — узоры на коврах и обоях комнаты, рисунок на крыльях бабочки, цветы, фасады зданий, различные шестерёнки и многое другое

Геометрия 8 класс, Бутузов ВФ, Кадомцев СБ, Прасолов В.В, 2011
Скачать и читать Геометрия, 8 класс, Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В., 2011
 

Московские математические олимпиады 1935 1957 года, Прасолов В.В., 2010

Московские математические олимпиады 1935—1957 года, Прасолов В.В., 2010.

   В книге собраны задачи Московских математических олимпиад 1935— 1957 г. с ответами, указаниями и подробными решениями. В дополнениях приведены основные факты, используемые в решении олимпиадных задач.
Все задачи в том или ином смысле нестандартные. Их решение требует смекалки, сообразительности, а иногда и многочасовых размышлений.
Книга предназначена для учителей математики, руководителей кружков, школьников старших классов, студентов педагогических специальностей. Книга будет интересна всем любителям красивых математических задач.

Московские математические олимпиады 1935—1957 года, Прасолов В.В., 2010
Скачать и читать Московские математические олимпиады 1935 1957 года, Прасолов В.В., 2010
 

Элементы теории гомологий, Прасолов В.В., 2005

Элементы теории гомологий, Прасолов В.В., 2005.

  Эта книга является непосредственным продолжением книги "Элементы комбинаторной и дифференциальной топологии". Она начинается с определения симплициальных гомологий и когомологий; приводятся многочисленные примеры их вычисления и и х приложений. Затем обсуждается умножение Колмогорова-Александера на когомологиях. Значительная часть книги посвящена различным приложениям (симплициальных) гомологий и когомологий. Многие из них связаны с теорией препятствий. Одним из таких примеров служат характеристические классы векторных расслоений. Сингулярные гомологии и когомологии определяются во второй половине книги. Затем рассматривается еще один подход к построению теории когомологий - когомологии Чеха и тесно связанные с ними когомологии де Рама. Книга завершается различными приложениями теории гомологий в топологии многообразий. В книге приведено много задач (с решениями) и упражнений для самостоятельного решения.
Для студентов старших курсов и аспирантов математических и физических специальностей; для научных работников.

Элементы теории гомологий, Прасолов В.В., 2005
Скачать и читать Элементы теории гомологий, Прасолов В.В., 2005
 

Элементы комбинаторной и дифференциальной топологии, Прасолов В.В., 2004

Элементы комбинаторной и дифференциальной топологии, Прасолов В.В., 2004.

  Методы, используемые современной топологией, весьма разнообразны. В этой книге подробно рассматриваются методы комбинаторной топологии, которые заключаются в исследовании топологических пространств посредством их разбиений на какие-то элементарные множества, и методы дифференциальной топологии, которые заключаются в рассмотрении гладких многообразий и гладких отображений. Нередко одну и ту же топологическую задачу можно решить как комбинаторными методами, так и дифференциальными. В таких случаях обсуждаются оба подхода.
Одна из главных целей книги состоит в том, чтобы продвинуться в изучении свойств топологических пространств (и особенно многообразий) столь далеко, сколь это возможно без привлечения сложной техники. Этим она отличается от большинства книг по топологии.
Книга содержит много задач и упражнений. Почти все задачи снабжены подробными решениями.

Элементы комбинаторной и дифференциальной топологии, Прасолов В.В., 2004
Скачать и читать Элементы комбинаторной и дифференциальной топологии, Прасолов В.В., 2004
 

Многочлены, Прасолов В.В., 2003

Многочлены, Прасолов В.В., 2003.

В книге изложены основные результаты исследований по теории многочленов, как классические, так и современные. Большое внимание уделено 17-й проблеме Гильберта о представлении неотрицательных многочленов суммами квадратов рациональных функций и ее обобщениям. Теория Галуа обсуждается прежде всего с точки зрения теории многочленов, а не с точки зрения общей теории расширения полей.
Для студентов, аспирантов, научных работников - математиков и физиков.

Многочлены, Прасолов В.В., 2003
Скачать и читать Многочлены, Прасолов В.В., 2003
 

Геометрия, 9 класс, Бутузов, Кадомцев, Прасолов, 2012

Геометрия, 9 класс, Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В., 2012.

   Значительная часть курса геометрии в 9 классе будет посвящена ещё одному очень важному и эффективному методу исследования свойств геометрических фигур — векторно-координатному методу. Кроме того, из учебника 9 класса вы узнаете о том, как измеряются и вычисляются площади геометрических фигур, и получите возможность приоткрыть дверь в стереометрию — это та часть геометрии, в которой изучаются геометрические фигуры в пространстве; более основательно стереометрией вы будете заниматься на уроках геометрии в старших классах. А в 9 классе мы будем опираться на то, что вы узнали и чему научились в 7 и 8 классах. Поэтому напомним основные определения и утверждения, с которыми вы познакомились в 8 классе.

Геометрия, 9 класс, Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В., 2012
Скачать и читать Геометрия, 9 класс, Бутузов, Кадомцев, Прасолов, 2012
 

Геометрия, 9 класс, Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В., 2012

Геометрия, 9 класс, Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В., 2012.

    При написании учебника, авторы стремились к доступности, чёткости и наглядности изложения материала в сочетании со строгой логикой. Доказательства теорем хорошо иллюстрированы, многие рисунки снабжены подписями, позволяющими ученику разобраться в доказательстве теоремы, даже не читая текста учебника, а переходя от одного рисунка к другому. Наряду с рисунками имеются слайды, показывающие реальные прообразы тех или иных геометрических понятий. Для многих геометрических терминов объяснено их происхождение.  После каждой главы располагаются дополнительные задачи, а в конце учебника — задачи повышенной трудности, а также проектные и исследовательские задачи. Они дают возможность учителю организовать индивидуальную работу с учениками, проявляющими особый интерес к геометрии, развить и повысить этот интерес. В конце учебника имеется подробная историческая справка, отражающая этапы развития геометрии и роль великих ученых-геометров в её становлении.

Геометрия, 9 класс, Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В., 2012

Скачать и читать Геометрия, 9 класс, Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В., 2012
 

Геометрия, 9 класс, Дидактические материалы, Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В., 2012

Геометрия, 9 класс, Дидактические материалы, Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В., 2012.

    Дидактические материалы ориентированы на учебник для 9 класса В.Ф. Бутузова, С.Б. Кадомцева, В.В. Прасолова «Геометрия. 9 класс» под редакцией В.А. Садовничего. В них представлены самостоятельные и контрольные работы в нескольких вариантах и различного уровня сложности, а также математические диктанты, примерные задачи к экзамену и дополнительные задачи. Ко всем заданиям приводятся ответы, а ко многим — указания.

Геометрия, 9 класс, Дидактические материалы, Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В., 2012

Скачать и читать Геометрия, 9 класс, Дидактические материалы, Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В., 2012
 
Показана страница 2 из 5