Прасолов

Задачи по планиметрии, Прасолов В.В., 2003

Задачи по планиметрии, Прасолов В.В., 2003.

  В этом сборнике задач представлены почти все темы планиметрии, которые изучаются в школе, в том числе и в специализированных классах. Его основу составляют задачи, предлагавшиеся в разное время на математических олимпиадах, и задачи из архивов математических олимпиад и математических кружков.

Задачи по планиметрии, Прасолов В.В., 2003
Скачать и читать Задачи по планиметрии, Прасолов В.В., 2003
 

Задачи по планиметрии, Прасолов В.В., 2006

Задачи по планиметрии, Прасолов В.В., 2006.

  Книга может использоваться в качестве задачника по геометрии для 7—11 классов в сочетании со всеми действующими учебниками по геометрии. В неё включены нестандартные геометрические задачи несколько повышенного по сравнению со школьными задачами уровня. Сборник содержит около 1900 задач с полными решениями и около 150 задач для самостоятельного решения.
С помощью этого пособия можно организовать предпрофильную и профильную подготовку по математике, элективные курсы по дополнительным главам планиметрии.
Материалы данного пособия полностью покрывают тематику и сложность заданий олимпиад всех уровней и всех видов экзаменов, включая ЕГЭ и вступительные экзамены в вузы.
Для школьников, преподавателей математики, руководителей математических кружков, студентов педагогических институтов и университетов.

Задачи по планиметрии, Прасолов В.В., 2006
Скачать и читать Задачи по планиметрии, Прасолов В.В., 2006
 

Задачи по алгебре, арифметике и анализу, Прасолов В.В., 2007

Задачи по алгебре, арифметике и анализу, Прасолов В.В., 2007.

   В книгу включены задачи по алгебре, арифметике и анализу, относящиеся к школьной программе, но, в основном, несколько повышенного уровня по сравнению с обычными школьными задачами. Есть также некоторое количество весьма трудных задач, предназначенных для учащихся математических классов. Сборник содержит более 1000 задач с полными решениями.
Для школьников, преподавателей математики, руководителей математических кружков, студентов пединститутов.

Задачи по алгебре, арифметике и анализу, Прасолов В.В., 2007
Скачать и читать Задачи по алгебре, арифметике и анализу, Прасолов В.В., 2007
 

Задачи и теоремы линейной алгебры, Прасолов В.В., 2008

Задачи и теоремы линейной алгебры, Прасолов В.В., 2008.

  Это издание существенно переработано и расширено по сравнению с предыдущим, написанным более 15 лет назад. Добавлена даже целая новая глава, посвящённая некоммутативной линейной алгебре. Добавлены также параграфы, посвящённые ортогональным многочленам, нормированным пространствам, описанию образа полилинейного отображения, теории реплик и элементам теории алгебр Ли, ганкелевым и тёплицевым матрицам, числовому образу оператора. Гораздо более подробно, чем в первом издании, изложена линейная алгебра над конечными полями.

Задачи и теоремы линейной алгебры, Прасолов В.В., 2008
Скачать и читать Задачи и теоремы линейной алгебры, Прасолов В.В., 2008
 

Точки Трокара и изогональное сопряжение, Прасолов В.В., 2000

Точки Трокара и изогональное сопряжение, Прасолов В.В., 2000.

 Изогональное сопряжение относительно треугольника А1А2А3 сопоставляет точке X такую точку У, что прямая YAi симметрична прямой XAi относительно биссектрисы угла Ai (i = 1, 2, 3). Это преобразование обладает многими интересными свойствами. В частности, оно переводит друг в друга две замечательные точки треугольника - точки Брокара.
Текст брошюры представляет собой обработку записи лекции, прочитанной автором 6 ноября 1999 года на Малом мехмате для школьников 9-11 классов.

Точки Трокара и изогональное сопряжение, Прасолов В.В., 2000
Скачать и читать Точки Трокара и изогональное сопряжение, Прасолов В.В., 2000
 

Геометрия, дидактические материалы, 9 класс, Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. 2012

Геометрия, дидактические материалы, 9 класс, Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. 2012.

Дидактические материалы ориентированы на учебник В.Ф.Бутузова, С.Б.Кадомцева, В.В.Прасолова «Геометрия. 9» под редакцией В. А. Садовничего.

В них представлены самостоятельные и контрольные работы в нескольких вариантах и различного уровня сложности, а также математические диктанты и примерные задачи к ГИА. Ко всем заданиям даны ответы, а ко многим — указания к решениям.

1.   Две окружности имеют единственную общую точку К. Прямая, проходящая через точку К, пересекает эти окружности в точках А и В. Докажите, что прямые, касающиеся этих окружностей в точках А и В, параллельны.
2.   Докажите, что четыре точки, симметричные данной точке относительно середин сторон квадрата, являются вершинами квадрата.
3.   Дан острый угол АОВ и точка К внутри его. Постройте квадрат, одна сторона которого лежит на луче ОА, другая сторона проходит через точку К и одна вершина лежит на луче ОВ.

Геометрия. Дидактические материалы, 9 класс, Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. 2012
Скачать и читать Геометрия, дидактические материалы, 9 класс, Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. 2012
 

Геометрия, 8 класс, Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В., 2011

Геометрия 8 класс, Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В., 2011.

Параллельность

Представим себе две прямые на плоскости Они могут пересекаться, в частности, под прямым углом, но могут и не пересекаться Непересекающиеся прямые называются параллельными Параллельные прямые (а точнее, отрезки параллельных прямых) мы видим на каждом шагу — два противоположных края прямоугольного стола, строчки текста, две рельсы, нотный стан и т д Параллельные прямые используются, например, в архитектуре и технике, столярном деле и кройке, физике и черчении В геометрии параллельные прямые играют не меньшую роль, чем перпендикулярные В этой главе мы будем изучать свойства параллельных прямых и в связи с этим обсудим очень важный вопрос — об аксиомах геометрии

Многоугольники
 
До сих пор мы рассматривали самые простые многоугольники — треугольники и прямоугольники В этой главе перейдём к изучению свойств более сложных многоугольников: различных четырёхугольников, а также правильных многоугольников Многие из этих фигур обладают симметрией Симметрия играет важную роль не только в геометрии, но и в других науках, в архитектуре, искусстве, технике Симметричные предметы вы не раз видели в природе и окружающей обстановке — узоры на коврах и обоях комнаты, рисунок на крыльях бабочки, цветы, фасады зданий, различные шестерёнки и многое другое

Геометрия 8 класс, Бутузов ВФ, Кадомцев СБ, Прасолов В.В, 2011
Скачать и читать Геометрия, 8 класс, Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В., 2011
 

Московские математические олимпиады 1935 1957 года, Прасолов В.В., 2010

Московские математические олимпиады 1935—1957 года, Прасолов В.В., 2010.

   В книге собраны задачи Московских математических олимпиад 1935— 1957 г. с ответами, указаниями и подробными решениями. В дополнениях приведены основные факты, используемые в решении олимпиадных задач.
Все задачи в том или ином смысле нестандартные. Их решение требует смекалки, сообразительности, а иногда и многочасовых размышлений.
Книга предназначена для учителей математики, руководителей кружков, школьников старших классов, студентов педагогических специальностей. Книга будет интересна всем любителям красивых математических задач.

Московские математические олимпиады 1935—1957 года, Прасолов В.В., 2010
Скачать и читать Московские математические олимпиады 1935 1957 года, Прасолов В.В., 2010
 
Показана страница 1 из 4