Прасолов

Задачи по алгебре, арифметике и анализу, Прасолов В.В., 2011

Задачи по алгебре, арифметике и анализу, Прасолов В.В., 2011.

В книгу включены задачи по алгебре, арифметике и анализу, относящиеся к школьной программе, но, в основном, несколько повышенного уровня по сравнению с обычными школьными задачами. Есть также некоторое количество весьма трудных задач, предназначенных для учащихся математических классов. Сборник содержит более 1000 задач с полными решениями. Для школьников, преподавателей математики, руководителей математических кружков, студентов пединститутов. Первое издание книги вышло в 2007 г.

Задачи по алгебре, арифметике и анализу, Прасолов В.В., 2011
Скачать и читать Задачи по алгебре, арифметике и анализу, Прасолов В.В., 2011
 

Задачи по планиметрии, Прасолов В.В., 2003

Задачи по планиметрии, Прасолов В.В., 2003.

  В этом сборнике задач представлены почти все темы планиметрии, которые изучаются в школе, в том числе и в специализированных классах. Его основу составляют задачи, предлагавшиеся в разное время на математических олимпиадах, и задачи из архивов математических олимпиад и математических кружков.

Задачи по планиметрии, Прасолов В.В., 2003
Скачать и читать Задачи по планиметрии, Прасолов В.В., 2003
 

Задачи по планиметрии, Прасолов В.В., 2006

Задачи по планиметрии, Прасолов В.В., 2006.

  Книга может использоваться в качестве задачника по геометрии для 7—11 классов в сочетании со всеми действующими учебниками по геометрии. В неё включены нестандартные геометрические задачи несколько повышенного по сравнению со школьными задачами уровня. Сборник содержит около 1900 задач с полными решениями и около 150 задач для самостоятельного решения.
С помощью этого пособия можно организовать предпрофильную и профильную подготовку по математике, элективные курсы по дополнительным главам планиметрии.
Материалы данного пособия полностью покрывают тематику и сложность заданий олимпиад всех уровней и всех видов экзаменов, включая ЕГЭ и вступительные экзамены в вузы.
Для школьников, преподавателей математики, руководителей математических кружков, студентов педагогических институтов и университетов.

Задачи по планиметрии, Прасолов В.В., 2006
Скачать и читать Задачи по планиметрии, Прасолов В.В., 2006
 

Задачи по алгебре, арифметике и анализу, Прасолов В.В., 2007

Задачи по алгебре, арифметике и анализу, Прасолов В.В., 2007.

   В книгу включены задачи по алгебре, арифметике и анализу, относящиеся к школьной программе, но, в основном, несколько повышенного уровня по сравнению с обычными школьными задачами. Есть также некоторое количество весьма трудных задач, предназначенных для учащихся математических классов. Сборник содержит более 1000 задач с полными решениями.
Для школьников, преподавателей математики, руководителей математических кружков, студентов пединститутов.

Задачи по алгебре, арифметике и анализу, Прасолов В.В., 2007
Скачать и читать Задачи по алгебре, арифметике и анализу, Прасолов В.В., 2007
 

Задачи и теоремы линейной алгебры, Прасолов В.В., 2008

Задачи и теоремы линейной алгебры, Прасолов В.В., 2008.

  Это издание существенно переработано и расширено по сравнению с предыдущим, написанным более 15 лет назад. Добавлена даже целая новая глава, посвящённая некоммутативной линейной алгебре. Добавлены также параграфы, посвящённые ортогональным многочленам, нормированным пространствам, описанию образа полилинейного отображения, теории реплик и элементам теории алгебр Ли, ганкелевым и тёплицевым матрицам, числовому образу оператора. Гораздо более подробно, чем в первом издании, изложена линейная алгебра над конечными полями.

Задачи и теоремы линейной алгебры, Прасолов В.В., 2008
Скачать и читать Задачи и теоремы линейной алгебры, Прасолов В.В., 2008
 

Точки Трокара и изогональное сопряжение, Прасолов В.В., 2000

Точки Трокара и изогональное сопряжение, Прасолов В.В., 2000.

 Изогональное сопряжение относительно треугольника А1А2А3 сопоставляет точке X такую точку У, что прямая YAi симметрична прямой XAi относительно биссектрисы угла Ai (i = 1, 2, 3). Это преобразование обладает многими интересными свойствами. В частности, оно переводит друг в друга две замечательные точки треугольника - точки Брокара.
Текст брошюры представляет собой обработку записи лекции, прочитанной автором 6 ноября 1999 года на Малом мехмате для школьников 9-11 классов.

Точки Трокара и изогональное сопряжение, Прасолов В.В., 2000
Скачать и читать Точки Трокара и изогональное сопряжение, Прасолов В.В., 2000
 

Геометрия, дидактические материалы, 9 класс, Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. 2012

Геометрия, дидактические материалы, 9 класс, Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. 2012.

Дидактические материалы ориентированы на учебник В.Ф.Бутузова, С.Б.Кадомцева, В.В.Прасолова «Геометрия. 9» под редакцией В. А. Садовничего.

В них представлены самостоятельные и контрольные работы в нескольких вариантах и различного уровня сложности, а также математические диктанты и примерные задачи к ГИА. Ко всем заданиям даны ответы, а ко многим — указания к решениям.

1.   Две окружности имеют единственную общую точку К. Прямая, проходящая через точку К, пересекает эти окружности в точках А и В. Докажите, что прямые, касающиеся этих окружностей в точках А и В, параллельны.
2.   Докажите, что четыре точки, симметричные данной точке относительно середин сторон квадрата, являются вершинами квадрата.
3.   Дан острый угол АОВ и точка К внутри его. Постройте квадрат, одна сторона которого лежит на луче ОА, другая сторона проходит через точку К и одна вершина лежит на луче ОВ.

Геометрия. Дидактические материалы, 9 класс, Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. 2012
Скачать и читать Геометрия, дидактические материалы, 9 класс, Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. 2012
 

Геометрия, 8 класс, Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В., 2011

Геометрия 8 класс, Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В., 2011.

Параллельность

Представим себе две прямые на плоскости Они могут пересекаться, в частности, под прямым углом, но могут и не пересекаться Непересекающиеся прямые называются параллельными Параллельные прямые (а точнее, отрезки параллельных прямых) мы видим на каждом шагу — два противоположных края прямоугольного стола, строчки текста, две рельсы, нотный стан и т д Параллельные прямые используются, например, в архитектуре и технике, столярном деле и кройке, физике и черчении В геометрии параллельные прямые играют не меньшую роль, чем перпендикулярные В этой главе мы будем изучать свойства параллельных прямых и в связи с этим обсудим очень важный вопрос — об аксиомах геометрии

Многоугольники
 
До сих пор мы рассматривали самые простые многоугольники — треугольники и прямоугольники В этой главе перейдём к изучению свойств более сложных многоугольников: различных четырёхугольников, а также правильных многоугольников Многие из этих фигур обладают симметрией Симметрия играет важную роль не только в геометрии, но и в других науках, в архитектуре, искусстве, технике Симметричные предметы вы не раз видели в природе и окружающей обстановке — узоры на коврах и обоях комнаты, рисунок на крыльях бабочки, цветы, фасады зданий, различные шестерёнки и многое другое

Геометрия 8 класс, Бутузов ВФ, Кадомцев СБ, Прасолов В.В, 2011
Скачать и читать Геометрия, 8 класс, Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В., 2011
 
Показана страница 1 из 4