Дидактические материалы и методические рекомендации для учителя по геометрии: 8 класс: к учебнику А.В. Погорелова «Геометрия. 7-9 классы» / Т.М. Мищенко.
Данное пособие полностью соответствует федеральному государственному образовательному стандарту (второго поколения).
Предлагаемые дидактические материалы и методические рекомендации призваны помочь учителю, работающему по учебнику А.В. Погорелова «Геометрия. 7-9 классы».
Пособие написано к учебнику, переработанному в соответствии со Стандартом второго поколения. Пособие полностью соответствует требованиям, предъявляемым Стандартом второго поколения к уровню изложения теоретического материала. Предлагаемые задания удовлетворяют требованиям планируемых результатов обучения, как обязательного уровня, так и повышенного уровня сложности.
Структура контрольных работ и форма заданий соответствуют структуре и форме заданий Государственной итоговой аттестации (ГИА).
Использование рекомендации методического пособия в учебном процессе позволит осуществить: во-первых, достижение каждым учеником уровня обязательной геометрической подготовки, и, во-вторых, сформировать у учащихся умение применять полученные знания, как в стандартных ситуациях, так и в несколько отличных от обязательного уровня.
В пособии по каждой главе дается общая характеристика ее содержания, места и роли в курсе, методических особенностей ее изучения; контрольная работа.
По каждому параграфу дается комментарий для учителя, включающий общую характеристику содержания параграфа, требования к знаниям и умениям учащихся; методические рекомендации к изучению материала для учителя; примерное планирование изучения материала параграфа; указания к решению задач из учебного пособия; дополнительные задачи.
52. Свойство диагоналей параллелограмма (1ч) Комментарий для учителя
В пункте 52 рассматривается свойство диагоналей параллелограмма, при этом указывается, что теорема о свойстве диагоналей параллелограмма является обратной к теореме о признаке параллелограмма. Поэтому на этот факт следует обратить внимание. Кроме того, при доказательстве используется искусственный прием, который заключается в построении параллелограмма ABCVD с заведомо пересекающимися и делящимися пополам диагоналями. После чего, доказывается совпадение построенного параллелограмма ABCxDt у которого диагонали пересекаются и точкой пересечения делятся пополам, с данным параллелограммом ABCD.
Текущие результаты изучения пункта 52. Учащиеся должны:
- формулировать и объяснять формулировку теоремы о свойстве диагоналей параллелограмма;
- объяснять понятия прямой и обратной теорем;
- решать задачи с использованием свойства диагоналей параллелограмма.
