математика

Теория принятия решений, Черноморов Г.А., 2002

Теория принятия решений, Черноморов Г.А., 2002.

   Приведены методология, задачи, критерии и инструментальные средства, применяемые для поддержки процессов принятия решений. Основное внимание уделено методам анализа структурированных проблем, предполагающим наличие объективных моделей и позволяющим существенно сократить затраты на поиск наилучшей альтернативы. Рассмотрено применение таких методов, как ветвей и границ, динамического программирования, генераторов расписаний, табу, отжига, вложенных цепей Маркова и др., для анализа детерминированных, вероятностных и игровых моделей принятия решений. Описаны критерии и процедуры решения задач в условиях полной неопределенности, а также методы оценки и сравнения многокритериальных альтернатив.
Предназначено для студентов вузов, обучающихся по специальности 351400 «Прикладная информатика (по областям)», а также может быть рекомендовано для студентов специальностей 220200 «Автоматизированные системы управления», 071900 «Информационные системы и технологии» и аспирантов соответствующих направлений. Представляет интерес для системных аналитиков и специалистов по информационным системам.

Теория принятия решений, Черноморов Г.А., 2002
Скачать и читать Теория принятия решений, Черноморов Г.А., 2002
 

Сборник олимпиадных задач по математике, Горбачёв Н.В., 2004

Сборник олимпиадных задач по математике, Горбачёв Н.В., 2004.

   В книге собраны олимпиадные задачи разной сложности — как нетрудные задачи, которые часто решаются устно в одну строчку, так и задачи исследовательского типа.
Книга предназначена для преподавателей, руководителей математических кружков, студентов педагогических специальностей, и всех интересующихся математикой.

Сборник олимпиадных задач по математике, Горбачёв Н.В., 2004
Скачать и читать Сборник олимпиадных задач по математике, Горбачёв Н.В., 2004
 

Теория операторов, Садовничий В.А., 2004

Теория операторов, Садовничий В.А., 2004.

   Учебник соответствует программе курсов «Функциональный анализ», «Теория операторов», «Анализ III», которые читаются в университетах и педагогических вузах. В книге приведены основные теоретико-множественные понятия, представлена общая теория метрических, топологических, линейных топологических и нормированных пространств, общая теория меры, измеримых функций и интеграла Лебега. Подробно рассмотрены теория операторов в гильбертовом пространстве, спектральная теория самосопряженных операторов, применения методов теории аналитических функций в спектральной теории несамосопряженных операторов, теория преобразования Фурье и обобщенные функции.
Для студентов университетов, педагогических вузов и вузов с углубленным изучением математики. Может быть полезен аспирантам и научным работникам.

Теория операторов, Садовничий В.А., 2004
Скачать и читать Теория операторов, Садовничий В.А., 2004
 

Методы решения задач математической физики, Рындин Е.А.

Методы решения задач математической физики, Рындин Е.А.

   В учебном пособии рассмотрены лишь самые основные уравнения математической физики, наиболее широко используемые в процессе создания элементной базы микросхем и микросистем, а также основные особенности задания граничных и начальных условий, методы дискретизации дифференциальных уравнений в частных производных, методы решения систем алгебраических уравнений, основные этапы решения задач матфизики.

Методы решения задач математической физики, Рындин Е.А.
Скачать и читать Методы решения задач математической физики, Рындин Е.А.
 

Теория вероятностей и математическая статистика, учебное пособие, стандарт третьего поколения, Семенов В.А., 2013

Теория вероятностей и математическая статистика, учебное пособие, стандарт третьего поколения, Семенов В.А., 2013.

Настоящее учебное пособие предназначено для студентов всех специальностей, обучающихся учебным дисциплинам «Математика» и «Высшая математика». Оно может быть также полезно преподавателям при подготовке и организации учебного процесса.
Учебное пособие написано в соответствии с действующими федеральными государственными образовательными стандартами и содержит теоретический материал и задачи для изучения алгебры событий, теории вероятностей и математической статистики. Многочисленные примеры и задачи могут использоваться также и на практических занятиях.
Рекомендовано УМО в области инновационных междисциплинарных общеобразовательных программ в качестве учебного пособия по направлению 010500 «Математическое обеспечение и администрирование информационных систем».

§1. Классификация событий.
Событие — это то, что может произойти или нет при выполнении определенного комплекса условий, или, как говорят, при проведении испытания. Среди возможных событий выделяют достоверные и невозможные. Если при каждом испытании всегда происходит некоторое событие, то оно называется достоверным. Для обозначения достоверного события будет использоваться символ U. Если при испытании некоторое событие заведомо не может произойти, то оно называется невозможным. Невозможное событие обозначается символом V.
Если событие А не является достоверным или невозможным, то оно часто называется случайным.
Понятие испытания в теории вероятности является одним из основных понятий. Оно несколько отличается от понятия испытания или эксперимента в физике или химии.
Часто при проведении физического испытания не все его возможные исходы заранее известны. В отличие от этого теория вероятностей предполагает, что известен перечень всевозможных исходов испытания. Обычно считается также, что испытание может быть воспроизведено любое количество раз. При этом события характеризуются повторяемостью частоты их появления при многократных испытаниях.

Теория вероятностей и математическая статистика, учебное пособие, стандарт третьего поколения, Семенов В.А., 2013

Скачать и читать Теория вероятностей и математическая статистика, учебное пособие, стандарт третьего поколения, Семенов В.А., 2013
 

Математические методы решения химических задач, Козко А.И., Соболева Е.С., Субботин А.В., 2013

Математические методы решения химических задач, Козко А.И., Соболева Е.С., Субботин А.В., 2013.

В учебном пособии изложены теория обыкновенных дифференциальных уравнений, уравнения и частных производных. уравнений математической физики- элементы теории функций комплексного переменного. даны приложения химических задач к курсу линейной алгебры.
Для студентов химических специальностей учреждений высшего профессионального образования.

Математические методы решения химических задач, Козко А.И., Соболева Е.С., Субботин А.В., 2013

Скачать и читать Математические методы решения химических задач, Козко А.И., Соболева Е.С., Субботин А.В., 2013
 

Дискретная математика, Конспект лекций, Гусев С.А., Сарычева О.М., 2003

Дискретная математика, Конспект лекций, Гусев С.А., Сарычева О.М., 2003.

   Данный конспект лекций составлен на основе курса лекций, читаемого авторами для студентов I курса факультета бизнеса Новосибирского государственного технического университета. В нем излагаются основы таких разделов дискретной математики, как «Теория множеств», «Алгебра логики», «Комбинаторика», «Теория графов».
Работа предназначена для студентов и лиц, начинающих изучать дискретную математику.

Дискретная математика, Конспект лекций, Гусев С.А., Сарычева О.М., 2003
Скачать и читать Дискретная математика, Конспект лекций, Гусев С.А., Сарычева О.М., 2003
 

Математика, 2 класс, Первое полугодие, Гейдман Б.П., Мишарина И.Э., Зверева Е.А., 2014

Математика, 2 класс, Первое полугодие, Гейдман Б.П., Мишарина И.Э., Зверева Е.А., 2014.

   Доктор Пилюлькин приготовил витаминки для своих больных. В одну баночку он положил 40 витаминок. Это на 6 витаминок больше, чем в другую. Сколько витаминок положил в две баночки доктор Пилюлькин?

Математика, 2 класс, Первое полугодие, Гейдман Б.П., Мишарина И.Э., Зверева Е.А., 2014
Скачать и читать Математика, 2 класс, Первое полугодие, Гейдман Б.П., Мишарина И.Э., Зверева Е.А., 2014
 
Показана страница 148 из 639