математика

Сборник задач по дифференциальным уравнениям, Филиппов А.Ф., 1998

Сборник задач по дифференциальным уравнениям, Филиппов А.Ф., 1998.

  Сборник содержит материалы для упражнений по курсу дифференциальных уравнений для университетов и технических вузов с повышенной математической программой.
В настоящее издание добавлены задачи, предлагавшиеся на письменных экзаменах на механико-математическом факультете МГУ.

Сборник задач по дифференциальным уравнениям, Филиппов А.Ф., 1998
Скачать и читать Сборник задач по дифференциальным уравнениям, Филиппов А.Ф., 1998
 

Практикум на ЭВМ, Методы решения линейных систем и нахождения собственных значений, Часть 2, Богачев К.Ю., 1998

Практикум на ЭВМ, Методы решения линейных систем и нахождения собственных значений, Часть 2, Богачев К.Ю., 1998.

  Настоящее пособие содержит описания алгоритмов, предлагаемых к реализации на ЭВМ студентам механико-математического факультета МГУ на занятиях но Практикуму на ЭВМ”. Для всех алгоритмов приводится необходимое теоретическое обоснование, соответствующие расчетные соотношения и рекомендации но их практическому осуществлению на ЭВМ (организация процесса вычислений. хранения данных и результатов в памяти ЭВМ и т.п.).

Практикум на ЭВМ, Методы решения линейных систем и нахождения собственных значений, Часть 2, Богачев К.Ю., 1998
Скачать и читать Практикум на ЭВМ, Методы решения линейных систем и нахождения собственных значений, Часть 2, Богачев К.Ю., 1998
 

Практикум на ЭВМ, Методы решения линейных систем и нахождения собственных значений, Часть 1, Богачев К.Ю., 1998

Практикум на ЭВМ, Методы решения линейных систем и нахождения собственных значений, Часть 1, Богачев К.Ю., 1998

  Настоящее пособие содержит описания алгоритмов, предлагаемых к реализации на ЭВМ студентам механико-математического факультета МГУ на занятиях но Практикуму на ЭВМ”. Для всех алгоритмов приводится необходимое теоретическое обоснование, соответствующие расчетные соотношения и рекомендации но их практическому осуществлению на ЭВМ (организация процесса вычислений. хранения данных и результатов в памяти ЭВМ и т.п.).

Практикум на ЭВМ, Методы решения линейных систем и нахождения собственных значений, Богачев К.Ю., 1998
Скачать и читать Практикум на ЭВМ, Методы решения линейных систем и нахождения собственных значений, Часть 1, Богачев К.Ю., 1998
 

Избранное-60, Арнольд В.И., 1997

Избранное-60, Арнольд В.И., 1997.

   Идея этой книги возникла у ее издателя — В. Б. Филиппова. Довод о том, что такая книга нужна не столько автору, и даже не столько его ученикам и коллегам, но гораздо более широкому кругу математиков разных возрастов и просто культурным людям (особенно россиянам в эти дни, когда наука и вообще культура практически забыта явными и неявными властителями, опьяненными свободой доступа к общенародным богатствам), помог убедить Владимира Игоревича в необходимости настоящего издания. Он составил список своих основных работ, распределил их по темам, дал сводку результатов, выбрал работы, включенные в эту книгу.

Избранное-60, Арнольд В.И., 1997
Скачать и читать Избранное-60, Арнольд В.И., 1997
 

Уравнения математической физики, Тихонов А.Н., Самарский А.А.

Уравнения математической физики, Тихонов А.Н., Самарский А.А.

  В книге рассматриваются задачи математической физики, приводящие к уравнениям с частными производными. Расположение материала соответствует основным типам уравнений.
Изучение каждого типа уравнений начинается с простейших физических задач, приводящих к уравнениям рассматриваемого типа. Особое внимание уделяется математической постановке задач, строгому изложению решения простейших задач и физической интерпретации результатов. В каждой главе помещены задачи и примеры.
В основу книги положены лекции, читавшиеся на физическом факультете МГУ.

Уравнения математической физики, Тихонов А.Н., Самарский А.А.
Скачать и читать Уравнения математической физики, Тихонов А.Н., Самарский А.А.
 

Вариационное исчисление, Смирнов В.И., Крылов В.И., Канторович Л.В., 1933

Классическая динамика, Смирнов В.И., Крылов В.И., Канторович Л.В., 1963.

  Настоящая книга выпускается в качестве пособия для студентов математического и физического факультетов Ленинградского Университета. В ее основе лежат лекции, которые читались мною несколько лет тому назад студеитам-физикам. Объем этих лекций был значительно меньше объема выпускаемой книги, которая, как мы уже упоминали, предназначается не только для физиков, но и для математиков. В связи с этим пришлось добавить большой новый материал. Вся эта книга составлена Л. В. Канторовичем и В. И, Крыловым. Главы I, IV и V написаны Л. В. Канторовичем, а главы II, Ш и VI—В, И. Крыловым.

Вариационное исчисление, Смирнов В.И., Крылов В.И., Канторович Л.В., 1933
Скачать и читать Вариационное исчисление, Смирнов В.И., Крылов В.И., Канторович Л.В., 1933
 

Практический курс дифференциальных уравнений и математического моделирования, Ибрагимов Н.X., 2007

Практический курс дифференциальных уравнений и математического моделирования, Ибрагимов Н.X., 2007.

  Настоящий учебник охватывает обширный материал, включающий составление и анализ математических моделей различных процессов и явлений из области физики, техники, биологии, медицины и экономики. Рассматриваемые модели описываются обыкновенными дифференциальными уравнениями, уравнениями с частными производными и их системами. Излагаются классические и современные методы решения дифференциальных уравнений. В частности, широко представлен инвариантный подход, связанный с привлечением локальных групп Ли, который позволяет находить решения нелинейных задач в аналитической форме.
Учебник предназначен студентам, аспирантам и преподавателям естественно-научных факультетов классических, технических и педагогических университетов, а также специалистам в области чистой и прикладной математики.

Практический курс дифференциальных уравнений и математического моделирования, Ибрагимов Н.X., 2007
Скачать и читать Практический курс дифференциальных уравнений и математического моделирования, Ибрагимов Н.X., 2007
 

Интегрирование дифференциальных уравнений с помощью степенных рядов, Преображенский С.П., Тихомиров С.Р., 1987

Интегрирование дифференциальных уравнений с помощью степенных рядов, Преображенский С. П., Тихомиров С.Р., 1987.

  Предлагаемое расчётное задание по теме "Дифференциальные уравнения" включает в себя следующие разделы:
1. составление по заданной функции дифференциального уравнения и задачи Коши:
2. проверка выполнения условий теоремы существования и единственности решения задачи Коши;
3. решение дифференциального уравнения с помощью степенного ряда.

Интегрирование дифференциальных уравнений с помощью степенных рядов, Преображенский С.П., Тихомиров С.Р., 1987
Скачать и читать Интегрирование дифференциальных уравнений с помощью степенных рядов, Преображенский С.П., Тихомиров С.Р., 1987
 
Показана страница 114 из 599