математика

Методы решения задач математической физики, Рындин Е.А.

Методы решения задач математической физики, Рындин Е.А.

   В учебном пособии рассмотрены лишь самые основные уравнения математической физики, наиболее широко используемые в процессе создания элементной базы микросхем и микросистем, а также основные особенности задания граничных и начальных условий, методы дискретизации дифференциальных уравнений в частных производных, методы решения систем алгебраических уравнений, основные этапы решения задач матфизики.

Методы решения задач математической физики, Рындин Е.А.
Скачать и читать Методы решения задач математической физики, Рындин Е.А.
 

Теория вероятностей и математическая статистика, учебное пособие, стандарт третьего поколения, Семенов В.А., 2013

Теория вероятностей и математическая статистика, учебное пособие, стандарт третьего поколения, Семенов В.А., 2013.

Настоящее учебное пособие предназначено для студентов всех специальностей, обучающихся учебным дисциплинам «Математика» и «Высшая математика». Оно может быть также полезно преподавателям при подготовке и организации учебного процесса.
Учебное пособие написано в соответствии с действующими федеральными государственными образовательными стандартами и содержит теоретический материал и задачи для изучения алгебры событий, теории вероятностей и математической статистики. Многочисленные примеры и задачи могут использоваться также и на практических занятиях.
Рекомендовано УМО в области инновационных междисциплинарных общеобразовательных программ в качестве учебного пособия по направлению 010500 «Математическое обеспечение и администрирование информационных систем».

§1. Классификация событий.
Событие — это то, что может произойти или нет при выполнении определенного комплекса условий, или, как говорят, при проведении испытания. Среди возможных событий выделяют достоверные и невозможные. Если при каждом испытании всегда происходит некоторое событие, то оно называется достоверным. Для обозначения достоверного события будет использоваться символ U. Если при испытании некоторое событие заведомо не может произойти, то оно называется невозможным. Невозможное событие обозначается символом V.
Если событие А не является достоверным или невозможным, то оно часто называется случайным.
Понятие испытания в теории вероятности является одним из основных понятий. Оно несколько отличается от понятия испытания или эксперимента в физике или химии.
Часто при проведении физического испытания не все его возможные исходы заранее известны. В отличие от этого теория вероятностей предполагает, что известен перечень всевозможных исходов испытания. Обычно считается также, что испытание может быть воспроизведено любое количество раз. При этом события характеризуются повторяемостью частоты их появления при многократных испытаниях.

Теория вероятностей и математическая статистика, учебное пособие, стандарт третьего поколения, Семенов В.А., 2013

Скачать и читать Теория вероятностей и математическая статистика, учебное пособие, стандарт третьего поколения, Семенов В.А., 2013
 

Математические методы решения химических задач, Козко А.И., Соболева Е.С., Субботин А.В., 2013

Математические методы решения химических задач, Козко А.И., Соболева Е.С., Субботин А.В., 2013.

В учебном пособии изложены теория обыкновенных дифференциальных уравнений, уравнения и частных производных. уравнений математической физики- элементы теории функций комплексного переменного. даны приложения химических задач к курсу линейной алгебры.
Для студентов химических специальностей учреждений высшего профессионального образования.

Математические методы решения химических задач, Козко А.И., Соболева Е.С., Субботин А.В., 2013

Скачать и читать Математические методы решения химических задач, Козко А.И., Соболева Е.С., Субботин А.В., 2013
 

Дискретная математика, Конспект лекций, Гусев С.А., Сарычева О.М., 2003

Дискретная математика, Конспект лекций, Гусев С.А., Сарычева О.М., 2003.

   Данный конспект лекций составлен на основе курса лекций, читаемого авторами для студентов I курса факультета бизнеса Новосибирского государственного технического университета. В нем излагаются основы таких разделов дискретной математики, как «Теория множеств», «Алгебра логики», «Комбинаторика», «Теория графов».
Работа предназначена для студентов и лиц, начинающих изучать дискретную математику.

Дискретная математика, Конспект лекций, Гусев С.А., Сарычева О.М., 2003
Скачать и читать Дискретная математика, Конспект лекций, Гусев С.А., Сарычева О.М., 2003
 

Математика, 2 класс, Первое полугодие, Гейдман Б.П., Мишарина И.Э., Зверева Е.А., 2014

Математика, 2 класс, Первое полугодие, Гейдман Б.П., Мишарина И.Э., Зверева Е.А., 2014.

   Доктор Пилюлькин приготовил витаминки для своих больных. В одну баночку он положил 40 витаминок. Это на 6 витаминок больше, чем в другую. Сколько витаминок положил в две баночки доктор Пилюлькин?

Математика, 2 класс, Первое полугодие, Гейдман Б.П., Мишарина И.Э., Зверева Е.А., 2014
Скачать и читать Математика, 2 класс, Первое полугодие, Гейдман Б.П., Мишарина И.Э., Зверева Е.А., 2014
 

Математика и информатика, Филимонова Л.В., Быкова Е.А., 2001

Математика и информатика, Филимонова Л.В., Быкова Е.А., 2001.
 
  Предлагаемое учебное пособие предназначено для студентов вузов, обучающихся на факультетах, где математика и информатика не являются предметами специализации. Оно составлено с учетом требований государ-ственного стандарта и в нем на доступном уровне изложены некоторые основополагающие вопросы, вошедшие в учебную программу по новому предмету “Математика и информатика”. Данное пособие содержит 11 параграфов, каждый из которых посвящен изучению фундаментальных вопросов математики и информатики. Его цель – воспитать у человека культуру рациональных методов оперирования имеющимися и приобретения новых знаний, ознакомить студентов с некоторыми разделами высшей математики, углубить знания, полученные в школе по информатике и информационным технологиям, дать необходимые сведения о современных аспектах использования ЭВМ и последних достижениях.

Математика и информатика, Филимонова Л.В., Быкова Е.А., 2001
Скачать и читать Математика и информатика, Филимонова Л.В., Быкова Е.А., 2001
 

Дифференциальные уравнения и краевые задачи, Моделирование и вычисление с помощью Mathematica, Maple и MATLAB, Эдвардс Ч.Г., Пенни Д.Э., 2008

Дифференциальные уравнения и краевые задачи, Моделирование и вычисление с помощью Mathematica, Maple и MATLAB, Эдвардс Ч.Г., Пенни Д.Э., 2008.
 
  Данный учебник представляет собой весьма полный современный вводный курс обыкновенных дифференциальных уравнений. Довольно подробно освещены все темы, затрагиваемые в классических вводных курсах, включая применение матричных методов, операционного исчисления, степенных рядов и рядов Фурье. Не обойдены вниманием и современные исследования в области дифференциальных уравнений, такие как, например, хаос в динамических системах и нелинейные явления и системы. Особое внимание авторы уделяют численным методам и обучению построения математических моделей самых разнообразных (например, экологических, физических, инженерных) систем. Для изучения таких моделей авторы используют самые современные математические пакеты: MATLAB, Maple и Mathematica. Кроме того, для каждого раздела имеются задачи различной сложности, а также проекты для самостоятельной разработки студентами. Несомненно, книга будет полезна всем, кто изучает дифференциальные уравнения — как математикам, так и студентам других специальностей — инженерам, физикам, химикам, биологам, географам и геологам.

Дифференциальные уравнения и краевые задачи, Моделирование и вычисление с помощью Mathematica, Maple и MATLAB, Эдвардс Ч.Г., Пенни Д.Э., 2008
Скачать и читать Дифференциальные уравнения и краевые задачи, Моделирование и вычисление с помощью Mathematica, Maple и MATLAB, Эдвардс Ч.Г., Пенни Д.Э., 2008
 

Основы математики для экономистов, Линейная алгебра и экономические модели, Дыхта В.А., 2003

Основы математики для экономистов, Линейная алгебра и экономические модели, Дыхта В.А., 2003.
 
  Книга представляет собой вводный курс линейной алгебры, изложенный в тесной связи с различными экономическими приложениями. Он написан на основе опыта чтения лекций в Иркутской государственной экономической академии. Охват теоретического материала ограничен алгеброй векторов, матриц и теорией систем линейных уравнений. Такой выбор продиктован тем, что содержание книги представляет собой часть базового курса математики для экономистов и готовящегося к изданию учебника. Оставшиеся вне поля зрения вопросы линейной алгебры (собственные значения, квадратичные формы, неотрицательные решения систем уравнений и неравенств) найдут свое отражение в соответствующих разделах учебника. Тем не менее, данная книга может изучаться совершенно автономно и служить основой небольшого специализированного курса. Рассмотренные примеры, экономические модели и упражнения прикладного характера (их свыше сотни) призваны облегчить самостоятельное изучение курса.
Рекомендуется для студентов всех экономических специальностей. Может быть полезна математикам-прикладникам, аспирантам, а также школьникам, интересующимся применением математики к экономике.

Основы математики для экономистов, Линейная алгебра и экономические модели, Дыхта В.А., 2003
Скачать и читать Основы математики для экономистов, Линейная алгебра и экономические модели, Дыхта В.А., 2003
 
Показана страница 109 из 599