математика

Функции комплексного переменного, Операционное исчисление, Теория устойчивости, Араманович И.Г., Лунц Г.Л., Эльсгольц Л.Э., 1968

Функции комплексного переменного, Операционное исчисление, Теория устойчивости, Араманович И.Г., Лунц Г.Л., Эльсгольц Л.Э., 1968.

  Книга посвящена трем разделам математики, знание которых необходимо многим специалистам, работающим в области автоматики. Изложение материала построено так, что вторая и третья части могут изучаться независимо друг от друга.
В тексте подробно решено большое количество задач и примеров. В конце каждой главы помещены задачи для самостоятельного решения.

Функции комплексного переменного, Операционное исчисление, Теория устойчивости, Араманович И.Г., Лунц Г.Л., Эльсгольц Л.Э., 1968
Скачать и читать Функции комплексного переменного, Операционное исчисление, Теория устойчивости, Араманович И.Г., Лунц Г.Л., Эльсгольц Л.Э., 1968
 

Дифференциальные уравнения, Жарова Н.Р., Кузнецова Л.Г., 2012

Дифференциальные уравнения, Жарова Н.Р., Кузнецова Л.Г., 2012.

  В пособии рассмотрены основные типы обыкновенных дифференциальных уравнений первого порядка. Из уравнений высших порядков рассмотрены отдельные типы уравнений, допускающих понижения порядка, и линейные, в том числе с постоянными коэффициентами. Отдельные главы посвящены методам решения систем дифференциальных уравнений и численным методам решения обыкновенных дифференциальных уравнений. В приложениях рассмотрены примеры краевых и прикладных задач с использованием компьютерных математических пакетов Maple и Mathcad. Приведён типовой расчёт по теме "Обыкновенные дифференциальные уравнения". Содержание пособия отвечает требованиям ФГОС ВПО к математической подготовке студентов физико-математического направления.
Данное уче6ное пособие предназначено для обучения дифференциальным уравнениям студентов физико-математического профиля, но может быть использовано студентами, аспирантами и преподавателями высших технических и экономических учебных заведений.

Дифференциальные уравнения, Жарова Н.Р., Кузнецова Л.Г., 2012
Скачать и читать Дифференциальные уравнения, Жарова Н.Р., Кузнецова Л.Г., 2012
 

ДИСКРЕТНАЯ МАТЕМАТИКА: Учебное пособие, руководство по изучению дисциплины, Балюкевич Э.Л., Ковалева Л.Ф., Романников А.Н., 2007

ДИСКРЕТНАЯ МАТЕМАТИКА: Учебное пособие, руководство по изучению дисциплины, Балюкевич Э.Л., Ковалева Л.Ф., Романников А.Н., 2007.

Фрагмент из книги.
Другой пример - составление каталога по алфавиту. Множество всех книг в библиотеке X разбивается на конечное число классов — количество букв алфавита Y. Книги, начинающиеся с одной и той же буквы, принадлежат одному классу, и между любой парой таких книг существует отношение эквивалентности.
В то же время составляя каталог по алфавиту, мы осуществляем сюръективное отображение множества всех книг в библиотеке X на множество букв алфавита Y.
Отношение эквивалентности - рефлексивно, симметрично и транзитивно. Эти свойства являются необходимыми и достаточными условиями разбиения множества на классы.
Отношение А на множестве М называется толерантностью, если оно рефлексивно и симметрично.
Так, отношение «быть знакомым» соответствует определению толерантности.
Отношение А на множестве X называется отношением порядка, если оно транзитивно и антирефлексивно.
Отношение порядка характеризует соотношение объектов друг к другу по старшинству, по важности, оно не является симметричным. Отношение х<у на множестве действительных чисел - есть пример отношения порядка.

ДИСКРЕТНАЯ МАТЕМАТИКА: Учебное пособие, руководство по изучению дисциплины, Балюкевич Э.Л., Ковалева Л.Ф., Романников А.Н., 2007

Скачать и читать ДИСКРЕТНАЯ МАТЕМАТИКА: Учебное пособие, руководство по изучению дисциплины, Балюкевич Э.Л., Ковалева Л.Ф., Романников А.Н., 2007
 

Методы интегрирования обыкновенных дифференциальных уравнений, Матвеев Н.М., 1967

Методы интегрирования обыкновенных дифференциальных уравнений, Матвеев Н.М., 1967.

   В книге даются основные понятия и определения теории обыкновенных дифференциальных уравнений, излагаются наиболее важные методы интегрирования, доказываются теоремы существования решений и исследуются свойства последних. Являясь учебником для студентов университетов, она может быть использована в педагогических институтах и в технических ВУЗах, а также студентами-заочниками и лицами, самостоятельно изучающими теорию обыкновенных дифференциальных уравнений.

Методы интегрирования обыкновенных дифференциальных уравнений, Матвеев Н.М., 1967
Скачать и читать Методы интегрирования обыкновенных дифференциальных уравнений, Матвеев Н.М., 1967
 

Математическая логика и теория алгоритмов, Анкудинов Г.И., Анкудинов И.Г., Петухов О.А., 2013

Математическая логика и теория алгоритмов, Анкудинов Г.И., Анкудинов И.Г., Петухов О.А., 2013.

Учебное пособие соответствует государственному образовательному стандарту дисциплины "Математическая логика и теория алгоритмов" направления подготовки дипломированных специалистов 654600 — "Информатика и вычислительная техника" (Специальность 220100 — ""Вычислительные машины, комплексы, системы и сети") и направления подготовки бакалавров 552800 — ""Информатика и вычислительная техника ".
В пособии излагаются разделы математической логики и теории алгоритмов, необходимые для освоения общепрофессиональных и специальных дисциплин специальности 220100. Достаточно подробно изложены основы логики высказываний и логики предикатов, включая приложение логики предикатов к доказательству правильности алгоритмов. Пособие содержит вводный материал по логическому программированию и клаузальной логике, а также основные понятия нечеткой и модальной логики. Приведены основы теории алгоритмов и алгоритмической разрешимости, доказательство эквивалентности моделей алгоритмов Тьюринга и рекурсивных схем Клини. Пособие содержит также введение в теорию эффективной вычислимости, переборных NP-нолных и NP-трудных задач.

1.7. Формальные теории и исчисление высказываний.
Формальная теория это
а) Множество правильно построенных формул (ППФ), или выражений, определяющих язык теории.
б) Подмножество формул множества ППФ, называемых аксиомами теории.
в) Правила вывода, т.е. конечное множество отношений между формулами.
Доказательством называется конечная последовательность
формул Ф, такая, что каждая Ф есть либо аксиома, либо
получена из предыдущих формул по одному из правил вывода.

Математическая логика и теория алгоритмов, Анкудинов Г.И., Анкудинов И.Г., Петухов О.А., 2013

Скачать и читать Математическая логика и теория алгоритмов, Анкудинов Г.И., Анкудинов И.Г., Петухов О.А., 2013
 

Математика. Учебное пособие, Алексеев Г.В., Холявин И.И., 2007

Математика. Учебное пособие, Алексеев Г.В., Холявин И.И., 2007.

Учебное пособие «Математика» предназначено для студентов экономического профиля и ориентировано на действующие государственные стандарты и учебные планы по специальности 080507 «Менеджмент организации» и направлению 521500 «Менеджмент».
В большинстве разделов приводятся примеры решения учебных задач из сферы экономики и управления, для которых представлены алгоритмы и программы в пакете MathCAD.

Фрагмент из книги.
3. Произведение матриц. Транспонированные матрицы. Произведение матриц - это специфическая операция, составляющая основу алгебры матриц. Она определена, когда число столбцов первой матрицы равно числу строк второй.

Математика. Учебное пособие, Алексеев Г.В., Холявин И.И., 2007

Скачать и читать Математика. Учебное пособие, Алексеев Г.В., Холявин И.И., 2007
 

Математическая статистика, Практическое руководство, Боярович Ю.С., Дудовская Ю.Е., 2012

Математическая статистика, Практическое руководство, Боярович Ю.С., Дудовская Ю.Е., 2012.

  В практическом руководстве изложены теоретические основы математической статистики. В издание включены следующие разделы: первичная обработка статистических данных, статистические оценки неизвестных параметров распределения, интервальные оценки неизвестных параметров распределения, проверка параметрических гипотез, гипотезы и критерии согласия, однофакторный дисперсионный анализ, корреляционный и регрессионный анализ. В каждом из разделов представлены решения типовых задач.
Предназначено для студентов специальностей 1-31 03 03-01 «Прикладная математика (научно-производственная деятельность)», 1-31 03 03-02 «Прикладная математика (научно-педагогическая деятельность)».

Математическая статистика, Практическое руководство, Боярович Ю.С., Дудовская Ю.Е., 2012
Скачать и читать Математическая статистика, Практическое руководство, Боярович Ю.С., Дудовская Ю.Е., 2012
 

Автоматическое образование гипотез, Математические основы общей теории, Гаек П., Гавранек Т., 1984

Автоматическое образование гипотез, Математические основы общей теории, Гаек П., Гавранек Т., 1984.

  Проблематика книги связана с известным вопросом искусственного интеллекта: "может ли машина мыслить? ", который понимается авторами как вопрос: "может ли машина формулировать и проверять гипотезы? ". Книга содержит две части: "логика индукции" и "логика открытия".
В книге рассматриваются нестандартные логические исчисления с обобщенными кванторами в смысле А. Мостовского (в том числе многозначные исчисления), которые применяются для формализации рациональных индуктивных выводов и для построения логических основ вычислительной статистики. В книге излагается метод автоматического образования гипотез и исследуются вопросы вычислительной сложности рассматриваемых процедур.
Книга предназначена для специалистов по искусственному интеллекту, программированию, математической логике, а также для философов, интересующихся проблемами индукции.

Автоматическое образование гипотез, Математические основы общей теории, Гаек П., Гавранек Т., 1984
Скачать и читать Автоматическое образование гипотез, Математические основы общей теории, Гаек П., Гавранек Т., 1984
 
Показана страница 107 из 599