Люлев

Самарские олимпиады, Андреев А.А., Люлев А.И., Савин А.Н., Саушкин М.Н., 1998

Самарские олимпиады, Андреев А.А., Люлев А.И., Савин А.Н., Саушкин М.Н., 1998.

Сборник задач может служить пособием для самостоятельной подготовки к олимпиадам по математике.
Сборник составлен из задач, предлагавшихся в последние годы на математических олимпиадах г. Самары: САММАТ, университета Наяновой, олимпиады СамГУ и СамГТУ для выпускников. К большинству задач даны краткие указания. Наиболее сложные задачи снабжены подробными решениями.

Задачник может быть рекомендован учащимся старших классов, преподавателям математики, а также лицам, интересующимся нестандартными задачами.


Самарские олимпиады, Андреев А.А., Люлев А.И., Савин А.Н., Саушкин М.Н., 1998
Скачать и читать Самарские олимпиады, Андреев А.А., Люлев А.И., Савин А.Н., Саушкин М.Н., 1998
 

Математика, Принцип Дирихле, Выпуск 1, Андреев А.А., Горелов Г.Н., Люлев А.И., Савин А.Н., 1997

Математика, Принцип Дирихле, Выпуск 1, Андреев А.А., Горелов Г.Н., Люлев А.И., Савин А.Н., 1997.

  При решении многих задач используется логический метод рассуждения — "от противного". В данной брошюре рассмотрена одна из его форм — принцип Дирихле. Этот принцип утверждает, что если множество из N элементов разбито на п непересекающихся частей, не имеющих общих элементов, где N>n, то, по крайней мере, в одной части будет более одного элемента. Принцип назван в честь немецкого математика П.Г.Л. Дирихле (1805-1859), который успешно применял его к доказательству арифметических утверждений.
По традиции принцип Дирихле объясняют на примере "зайцев и клеток". Если мы хотим применить принцип Дирихле при решении конкретной задачи, то нам предстоит разобраться, что в ней — "клетки", а что — "зайцы". Это обычно является самым трудным этапом в доказательстве. Цель этого сборника — познакомить читателя с некоторыми изюминками решения задач на принцип Дирихле. В конце сборника приведены задачи для самостоятельного решения, что дает возможность читателю попробовать свои силы в решении подобных задач.
Книга предназначена главным образом для старшеклассников, однако школьники младших классов также несомненно найдут в ней много полезного.

Математика, Принцип Дирихле, Выпуск 1, Андреев А.А., Горелов Г.Н., Люлев А.И., Савин А.Н., 1997
Скачать и читать Математика, Принцип Дирихле, Выпуск 1, Андреев А.А., Горелов Г.Н., Люлев А.И., Савин А.Н., 1997