геометрия

Аналитическая геометрия, Конспект лекций по курсу высшей математики для вечернего факультета, Михайлов Л.Е., 2008

Аналитическая геометрия, Конспект лекций по курсу высшей математики для вечернего факультета, Михайлов Л.Е., 2008.

  Пособие написано на основе опыта чтения лекций и ведения семинаров на вечернем факультете МИФИ. Содержит материал по следующим темам: Системы линейных уравнений, матрицы и определители, векторная алгебр и произведения векторов, прямая на плоскости, прямая и плоскость в пространстве, кривые второго порядка. Приведены решения типичных задач. Подобраны задачи для упражнений.
Предназначено для студентов вечернего факультета, может быть использовано преподавателями при проведении занятий по аналитической геометрии.

Аналитическая геометрия, Конспект лекций по курсу высшей математики для вечернего факультета, Михайлов Л.Е., 2008
Скачать и читать Аналитическая геометрия, Конспект лекций по курсу высшей математики для вечернего факультета, Михайлов Л.Е., 2008
 

Геометрия, Тематические тесты, 7 класс, Мищенко Т.М., Блинков А.Д., 2010

Геометрия, Тематические тесты, 7 класс, Мищенко Т.М., Блинков А.Д., 2010.

   Использование тематических тестов по геометрии в учебном процессе позволит: во-первых, осуществить оперативную проверку знаний и умений учащихся седьмых классов, полученных ими в процессе обучения по учебнику «Геометрия, 7—9» авторов Л. С. Атанасяна и др., на основе оценки уровня овладения учащимися программным материалом и, во-вторых, подготовить учащихся к итоговой аттестации в девятом классе.

Геометрия, Тематические тесты, 7 класс, Мищенко Т.М., Блинков А.Д., 2010
Скачать и читать Геометрия, Тематические тесты, 7 класс, Мищенко Т.М., Блинков А.Д., 2010
 

Аналитическая геометрия в примерах и задачах, Резниченко С.В., 2001

Аналитическая геометрия в примерах и задачах, Резниченко С.В., 2001.

   Книга посвящена алгебраическим главам курса аналитической геометрии: векторному исчислению и его применению к решению геометрических задач, теории матриц и определителей и ее применениям к исследованию систем линейных уравнений. Рассмотрены линейные операции над векторами, скалярное, векторное и смешанное произведения векторов, связь векторов с комплексными числами, операции над матрицами, свойства и приемы вычисления определителей, различные методы решения линейных систем.
Для студентов вузов, обучающихся по физико-математическим специальностям.

Аналитическая геометрия в примерах и задачах, Резниченко С.В., 2001
Скачать и читать Аналитическая геометрия в примерах и задачах, Резниченко С.В., 2001
 

Лекции по геометрии, Семестр 5, Риманова геометрия, Постников М.М., 1998

Лекции по геометрии, Семестр 5, Риманова геометрия, Постников М.М., 1998.

   Данная книга является непосредственным продолжением учебных пособий того же автора «Лекции по геометрии. Семестр I. Аналитическая геометрия», «Лекции по геометрии. Семестр II. Линейная алгебра», «Лекции по геометрии. Семестр III. Гладкие многообразия» и «Лекции по геометрии. Семестр IV. Дифференциальная геометрия». Эта книга посвящена подробному изложению римановой геометрии.
Для студентов математических специальностей вузов.

Лекции по геометрии, Семестр 5, Риманова геометрия, Постников М.М., 1998
Скачать и читать Лекции по геометрии, Семестр 5, Риманова геометрия, Постников М.М., 1998
 

Лекции по геометрии, Семестр 5, Группы и алгебры Ли, Постников М.М., 1982

Лекции по геометрии, Семестр 5, Группы и алгебры Ли, Постников М.М., 1982.

   В основе теории групп Ли лежит теорема Картана об эквивалентности категории односвязных групп Ли категории алгебр Ли. Эта книга посвящена доказательству теоремы Картана и основных связанных с ней результатов. Более глубокие отделы теории групп Ли, опирающиеся на теорему Картана, остаются, таким образом, вне рамок нашего изложения. Точно так же, теория алгебр Ли излагается лишь постольку, поскольку это необходимо для доказательства теоремы Картана.

Лекции по геометрии, Семестр 5, Группы и алгебры Ли, Постников М.М., 1982
Скачать и читать Лекции по геометрии, Семестр 5, Группы и алгебры Ли, Постников М.М., 1982
 

Лекции по геометрии, Семестр 4, Дифференциальная геометрия, Постников М.М., 1988

Лекции по геометрии, Семестр 4, Дифференциальная геометрия, Постников М.М., 1988.

   Является непосредственным продолжением пособий того же автора «Лекции по геометрии. Семестр I. Аналитическая геометрия». «Семестр II. Линейная алгебра» и «Семестр III. Гладкие многообразия». Семестр IV посвящен в основном теории связностей в векторных расслоениях. Рассматриваются также топологические вопросы — фундаментальная группа, накрытия и элементы теории К-групп. Заканчивается книга экскурсом в теорию гомотопических групп.
Для студентов математических специальностей вузов.

Лекции по геометрии, Семестр 4, Дифференциальная геометрия, Постников М.М., 1988
Скачать и читать Лекции по геометрии, Семестр 4, Дифференциальная геометрия, Постников М.М., 1988
 

Лекции по геометрии, Семестр 3, Гладкие многообразия, Постников М.М., 1987

Лекции по геометрии, Семестр 3, Гладкие многообразия, Постников М.М., 1987.

   Является непосредственным продолжением пособий того же автора «Лекции по геометрии. Семестр I. Аналитическая геометрия» и «Семестр II. Линейная алгебра». Семестр III посвящен гладким многообразиям. В него включены также сведения из общей топологии. Подробно разъясняется понятие подмногообразия, доказываются теоремы Сарда и Уитни, излагается теория дифференциальных форм и их интегрирования, а также элементарная дифференциальная геометрия — теория кривых (формулы Френе) и теория поверхностей (вплоть до теоремы о сохранении полной кривизны при изгибаниях).
Может служить учебным пособием по обязательному курсу геометрии и топологии в университетах и пединститутах.
Для студентов математических специальностей вузов.

Лекции по геометрии, Семестр 3, Гладкие многообразия, Постников М.М., 1987
Скачать и читать Лекции по геометрии, Семестр 3, Гладкие многообразия, Постников М.М., 1987
 

Лекции по геометрии, Семестр 2, Линейная алгебра, Постников М.М., 1986

Лекции по геометрии, Семестр 2, Линейная алгебра, Постников М.М., 1986.

   Настоящая книга является переработанным и значительно расширенным вторым изданием моей книги «Линейная алгебра и дифференциальная геометрия»), являвшейся почти точной записью лекционного курса на механико-математическом факультете МГУ им. М. В. Ломоносова. Этот характер книги не только создал определенные трудности при использовании ее как учебного пособия при другом построении курса (и, тем более, при другой программе), но и лишил возможности должным образом завершить ряд важных тем, прерванных в лекционном курсе по организационным причинам. Поэтому в этом издании книге придана большая универсальность и широта.

Лекции по геометрии, Семестр 2, Линейная алгебра, Постников М.М., 1986
Скачать и читать Лекции по геометрии, Семестр 2, Линейная алгебра, Постников М.М., 1986
 
Показана страница 16 из 102