Александров

Пособие по математике для поступающих в ВУЗы, Александров Б.И., Максимов В.М., Лурье М.В., Колесниченко А.В., 1972

Пособие по математике для поступающих в ВУЗы, Александров Б.И., Максимов В.М.,  Лурье М.В., Колесниченко А.В., 1972.

   В пособии собрано более тысячи самых разнообразных задач, отражающих уровень требований, предъявляемых к поступающим в различные ВУЗы страны. Большинство задач приведено с подробными решениями. Каждый параграф сопровождается предварительными замечаниями, где приведены справочные материалы и методические указания. Многие задачи являются задачами повышенной трудности и отражают уровень требований, предъявляемых при поступлении в физико-математические ВУЗы. Особое внимание следует обратить на IV часть пособия. Здесь в каждом параграфе собраны и систематизированы задачи по алгебре, тригонометрии и геометрии с единой методикой решения. Настоящее пособие предназначено для лиц, готовящихся к поступлению в высшие учебные заведения. Оно может быть использовано также преподавателями средних школ, подготовительных курсов и отделений ВУЗов.

Пособие по математике для поступающих в ВУЗы, Александров Б.И., Максимов В.М.,  Лурье М.В., Колесниченко А.В., 1972

Скачать и читать Пособие по математике для поступающих в ВУЗы, Александров Б.И., Максимов В.М., Лурье М.В., Колесниченко А.В., 1972
 

Энциклопедия элементарной математики, Книга 1, Арифметика, Александров П.С., Маркушевич А.И., Хинчин А.Я., 1961

Энциклопедия элементарной математики, Книга 1, Арифметика, Александров П.С., Маркушевич А.И., Хинчин А.Я., 1961.

    Издание "Энциклопедии элементарной математики" задумано Академией педагогических наук РСФСР как пособие для учителей математики средней школы и студентов физико-математических факультетов педагогических и учительских институтов. Его назначение - дать систематическое изложение научных основ школьного предмета математики. Книга не может служить для первоначального изучения предмета. Она предназначена для людей, изучавших элементарную математику и уже ставших или готовящихся стать преподавателем элементарной математики. Она не следует, как правило ни порядку, ни способу изложения математики в средней школе, так как то и другое обусловлено возрастными особенностями учащихся и образовательными целями средней школы, т.е. соображениями, которые не играют роли по отношению к подготовленному читателю-профессоналу. Книга начинается статьей, посвященной системам счисления и нумерации.

Далее идет статья о построении теоретических основ арифметики - рассматриваются весьма общие математические понятия (множества, группы, кольца и поля), а также аксиоматическое изложение теории натуральных чисел, на основе которой вводится теория целых, рациональных, действительных и комплексных чисел. Следующая статья посвящена вопросам, связанным с теорией делимости, в частности, теории цепных дробей. Последняя статья посвящена вопросам округления чисел, правилам приближенных вычислений, подсчета погрешностей и вспомогательным средствам вычислений.

Энциклопедия элементарной математики, Книга 1, Арифметика, Александров П.С., Маркушевич А.И., Хинчин А.Я., 1961.


Скачать и читать Энциклопедия элементарной математики, Книга 1, Арифметика, Александров П.С., Маркушевич А.И., Хинчин А.Я., 1961
 

Энциклопедия элементарной математики, Том 5, Геометрия, Александров П.С., Маркушевич А.И., Хинчин А.Я., 1966

Энциклопедия элементарной математики, Том 5, Геометрия, Александров П.С., Маркушевич А.И., Хинчин А.Я., 1966.

   Эта статья посвящена основным вопросам теории площадей и объемов - их определению, свойствам и вычислению. Площадь изучается только па плоскости. Определение площади кривой поверхности требует совсем других средств).

Энциклопедия элементарной математики, Том 5, Геометрия, Александров П.С., Маркушевич А.И., Хинчин А.Я., 1966

Скачать и читать Энциклопедия элементарной математики, Том 5, Геометрия, Александров П.С., Маркушевич А.И., Хинчин А.Я., 1966
 

Энциклопедия элементарной математики, Том 4, Геометрия, Александров П.С., Маркушевич А.И., Хинчин А.Я., 1963

Энциклопедия элементарной математики, Том 4, Геометрия, Александров П.С., Маркушевич А.И., Хинчин А.Я., 1963.

   Первые три книги «Энциклопедии элементарной математики» (сокращенно ЭЭМ), посвященные арифметике, алгебре и анализу, вышли свыше десяти лет тому назад. Теперь после долгого перерыва редакция решила завершить этот труд. За эти годы коллектив сотрудников ЭЭМ понес большие потери. В 1959 г. после продолжительной болезни скончался Александр Яковлевич Хинчин; еще раньше мы потеряли Дмитрия Ивановича Перепелкина, участвовавшего в составлении геометрических книг. То, что издание удалось все же возобновить, является результатом большой работы, проделанной Владимиром Григорьевичем Болтянским и Исааком Моисеевичем Ягломом.

Энциклопедия элементарной математики, Том 4, Геометрия, Александров П.С., Маркушевич А.И., Хинчин А.Я., 1963

Скачать и читать Энциклопедия элементарной математики, Том 4, Геометрия, Александров П.С., Маркушевич А.И., Хинчин А.Я., 1963
 

Энциклопедия элементарной математики, Том 3, Функции и пределы, Александров П.С., Маркушевич А.И., Хинчин А.Я., 1952

Энциклопедия элементарной математики, Том 3, Функции и пределы, Александров П.С., Маркушевич А.И., Хинчин А.Я., 1952.

   Книга посвящена вопросам анализа, а именно, функциям и пределам. Наряду с учением об элементарных функциях и обстоятельно изложенной теорией пределов, сюда вошли также наиболее элементарные сведения из дифференциального и интегрального исчисления, теории рядов и сведения о функциях комплексного переменного.

Энциклопедия элементарной математики, Том 3, Функции и пределы, Александров П.С., Маркушевич А.И., Хинчин А.Я., 1952

Скачать и читать Энциклопедия элементарной математики, Том 3, Функции и пределы, Александров П.С., Маркушевич А.И., Хинчин А.Я., 1952
 

Энциклопедия элементарной математики, Том 2, Алгебра, Александров П.С., Маркушевич А.И., Хинчин А.Я., 1951

Энциклопедия элементарной математики, Том 2, Алгебра, Александров П.С., Маркушевич А.И., Хинчин А.Я., 1951.

   Книга состоит из трех статей. Первый раздел дает изложение основ линейной алгебры (включая теорию определителей) и освещает с единой и общей точки зрения ряд разрозненных фактов школьного курса, кроме того, приводит к обобщению и углублению некоторых геометрических понятий (вектор, пространство, движение и др.). Второй раздел излагает теорию многочленов от одного и многих переменных и вопросы решения алгебраических уравнений в радикалах. В частности, здесь рассматривается важный для элементарной математики вопрос об условиях разрешимости алгебраических уравнений в квадратных радикалах. В третьем разделе, строго говоря, к алгебре относится лишь первая глава, включающая общий способ Лобачевского для решения алгебраического уравнения любой степени с численными коэффициентами. В целом же раздел представляет весьма полную сводку важнейших методов численного и графического решения алгебраических и трансцендентных уравнений.

Энциклопедия элементарной математики, Том 2, Алгебра, Александров П.С., Маркушевич А.И., Хинчин А.Я., 1951

Скачать и читать Энциклопедия элементарной математики, Том 2, Алгебра, Александров П.С., Маркушевич А.И., Хинчин А.Я., 1951
 

Основания геометрии. Учебное пособие для ВУЗов. Александров А.Д., 1981

Название: Основания геометрии. Учебное пособие для ВУЗов.

Автор: Александров А.Д.
1981

    Содержит изложение оснований евклидовой геометрии, отправляющееся от простой, выводимой из практики системы аксиом геометрии на плоскости. За ним следуют выводы, создающие мост от аксиом к обычному изложению элементарной геометрии, включая учение о площади. Далее - аксиомы геометрии в пространстве, отвлеченное понимание аксиоматики, непротиворечивость и др., затем - сравнительное изложение разных систем аксиом, общее понятие об аксиоматическом методе, очерк развития оснований геометрии и общие выводы об отношении геометрии к действительности.

Основания геометрии. Учебное пособие для вузов. Александров А.Д., 1981


Скачать и читать Основания геометрии. Учебное пособие для ВУЗов. Александров А.Д., 1981
 

Геометрия. 10 класс. Учебник с углубленным изучением математики. Александров А.Д., Вернер А.Л, Рыжик В.И. 1999

Название: Геометрия. 10 класс. Учебник с углубленным изучением математики.

Автор: Александров А.Д., Вернер А.Л, Рыжик В.И.
1999

   Этот учебник - переработанный вариант учебника А. Д. Александрова, А. Л. Вернера, В. И. Рыжика «Геометрия, 10-11» для углубленного изучения математики (М.: Просвещение, 1988-1995).
В результате переработки учебник представлен двумя книгами: «Геометрия, 10»4 и «Геометрия, 11», в которых последовательность и большей частью содержание глав сохранены. Изменения коснулись в основном задачного материала: смысловой единицей в этом варианте полагается весь параграф, а не его пункт, что и определило структуру задач в этом издании. (Для лучшей ориентировки в номере каждой задачи указано в скобках, к какому пункту параграфа она отнесена.) Все задачи распределены по рубрикам: «Дополняем теорию», «Доказываем», «Исследуем», «Рассуждаем», «Планируем», «Разбираемся в решении», «Участвуем в олимпиаде» и др. В них оптимально отражены все три составляющие геометрии: логика, наглядное воображение и практика.

Геометрия. 10 класс. Учебник с углубленным изучением математики. Александров А.Д., Вернер А.Л, Рыжик В.И. 1999

Скачать и читать Геометрия. 10 класс. Учебник с углубленным изучением математики. Александров А.Д., Вернер А.Л, Рыжик В.И. 1999
 
Показана страница 6 из 7