ЕГЭ 2017, Математика, Арифметика и алгебра, Задача 19, Профильный уровень, Вольфсон Г.И., Ященко И.В.

ЕГЭ 2017, Математика, Арифметика и алгебра, Задача 19, Профильный уровень, Вольфсон Г.И., Ященко И.В.

  Пособия по математике серии «ЕГЭ 2017. Математика» ориентированы на подготовку учащихся старшей школы к успешной сдаче единого государственного экзамена по математике. В данном учебном пособии представлен материал для подготовки к решению задачи 19.
Пособие предназначено для учащихся старшей школы, учителей математики, родителей.

ЕГЭ 2017, Математика, Арифметика и алгебра, Задача 19, Профильный уровень, Вольфсон Г.И., Ященко И.В.


Примеры.
Ученики писали тест. Результатом каждого ученика является целое неотрицательное число баллов. Ученик считается сдавшим тест, если он набрал не менее 83 баллов. Из-за того, что задания оказались трудными, всем участникам теста добавили по 5 баллов, благодаря чему количество сдавших тест увеличилось.
а) Мог ли средний балл участников, не сдавших тест, понизиться?
б) Мог ли средний балл участников, сдавших тест, понизиться и средний балл участников, не сдавших тест, тоже понизиться?
в) Известно, что первоначально средний балл участников теста составил 90, средний балл участников, сдавших тест, составил 100, а средний балл участников, не сдавших тест, составил 75. После добавления баллов средний балл участников, сдавших тест, стал равен 103, а не сдавших тест — 79. При каком минимальном числе участников теста возможна такая ситуация?

На доске было написано 20 натуральных чисел (не обязательно различных), каждое из которых не превосходит 40. Вместо нескольких (возможно, одного) из чисел на доске написали числа, меньшие первоначальных на 1. Числа, которые после этого оказались равными 0, с доски стёрли.
а) Могло ли среднее арифметическое чисел на доске увеличиться после произведённой операции?
б) Среднее арифметическое первоначально написанных чисел было равно 27. Могло ли среднее арифметическое оставшихся на доске чисел получиться равным 34?
в) Среднее арифметическое первоначально написанных чисел было равно 27. Найдите максимальное возможное значение среднего арифметического оставшихся на доске чисел.



Бесплатно скачать электронную книгу в удобном формате и читать:

Скачать книгу ЕГЭ 2017, Математика, Арифметика и алгебра, Задача 19, Профильный уровень, Вольфсон Г.И., Ященко И.В. - fileskachat.com, быстрое и бесплатное скачивание.

Скачать




Скачать - pdf - Яндекс.Диск.
Дата публикации:





Теги: :: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 


Не нашёл? Найди:





2018-05-26 21:58:06