ЕГЭ по математике, Алгебра, Профильный уровень, Практическая подготовка, Черняк А.А., Черняк Ж.А., 2017

Ссылки для скачивания файлов удалены по требованию правообладателя.
Download links removed by the request of the copyright holder.



ЕГЭ по математике, Алгебра, Профильный уровень, Практическая подготовка, Черняк А.А., Черняк Ж.А., 2017.

В книге рассмотрены традиционные разделы школьного курса алгебры на более высоком по сравнению с базовым уровне разделы, не входящие в круг задач базового уровня, необходимы для сдачи ЕГЭ по математике профильного уровня: арифметические и алгебраические преобразования, преобразования графиков, показательные и логарифмические уравнения и неравенства, комбинаторика и элементы теории вероятностей. Разбор текстовых задач по этим темам приведен в соответствующих главах В каждой главе кратко представлены необходимые теоретические сведения, большое количество задач с комментариями и решениями, приведены подходы и методы решения классов задач, задачи для самостоятельного решения. Ответы даются в конце пособия. Книга предназначена учащимся с базовым уровнем математической подготовки. Ее можно использовать для самостоятельной подготовки к профильному уровню ЕГЭ, на уроках, факультативных занятиях, подготовительных курсах, индивидуально с репетитором.

ЕГЭ по математике, Алгебра, Профильный уровень, Практическая подготовка, Черняк А.А., Черняк Ж.А., 2017

Примеры.
Найти НОД(3599, 4819).
Решение. Разделим 4819 на 3599 с остатком:
4819 = 3599 1+ 1220.
Разделим 3599 на 1220 с остатком: 3599 = 1220*2+1159. Разделим 1220 на 1159 с остатком: 1220 = 1159*1 + 61. Разделим 1159 на 61 с остатком:1159 = 61*19 + 0.
Итак, НОД(3599, 4819) = 61.
Основным инструментом при определении остатков больших степеней служит теорема Эйлера и ее следствие — малая теорема Ферма. Но вначале несколько определений.

Любое натуральное число n > 1 единственным (с точностью до перестановки сомножителей) способом можно представить в виде произведения n = р1a1 • р2a2 ••• рmam , где р1,..., рm — попарно различные простые делители числа m; a1,..., am— натуральные числа, называемые кратностями соответствующих делителей. Такое представление называется каноническим разложением числа m. Например, 360 = 23 • З2 • 5 — каноническое разложение числа 360.
Функция Эйлера φ(n), заданная на множестве натуральных чисел, определяется так: φ(n) равно числу всех натуральных чисел, не превосходящих n и взаимно простых с n. Очевидно, если n — простое число, то φ(n) = n-1. Формула для вычисления функции Эйлера для чисел, заданных в каноническом виде.

Оглавление
Предисловие
Обозначения и сокращения
ГЛАВА 1. Числа, выражения, графики
§ 1.1. Арифметические и алгебраические преобразования
§ 1.2. Преобразования графиков
Преобразование симметрии
Параллельный перенос
Преобразования растяжения (сжатия)
Два основных приема преобразования графиков, содержащих модули
§ 1.3. Задачи для самостоятельного решения
ГЛАВА 2. Алгебраические уравнения, неравенства, системы уравнений и неравенств
§ 2.1. Уравнения и неравенства в целых числах
§ 2.2. Рациональные уравнения и неравенства
§ 2.3. Уравнения и неравенства с модулями
§ 2.4. Иррациональные уравнения и неравенства
§ 2.5. Системы уравнений
§ 2.6. Моделирование текстовых задач
§ 2.7. Задачи для самостоятельного решения
ГЛАВА 3. Тригонометрия
§ 3.1. Преобразования тригонометрических выражений
§ 3.2. Тригонометрические уравнения и неравенства
§ 3.3. Задачи для самостоятельного решения
ГЛАВА 4. Показательные и логарифмические уравнения и неравенства
§ 4.1. Логарифмические выражения
§ 4.2. Показательные уравнения и неравенства
§ 4.3. Логарифмические уравнения и неравенства
§ 4.4. Задачи для самостоятельного решения
ГЛАВА 5. Комбинаторика и элементы теории вероятностей
§ 5.1. Элементарные правила комбинаторики
§ 5.2. Размещения, сочетания, перестановки
§ 5.3. Пространство случайных событий и классическое определение вероятности события
§ 5.4. Вычисление вероятности с использованием комбинаторики
§ 5.5. Теорема сложения и умножения вероятностей
§ 5.6. Задачи для самостоятельного решения
Ответы
К главе 1
К главе 2
К главе 3
К главе 4
К главе 5.

Купить .

Купить .
Дата публикации:






Теги: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 



Не нашёл? Найди:





2017-10-24 09:39:27