Курс высшей математики, Том 3, Часть 2, Смирнов В.И., 2010


Курс высшей математики, Том 3, Часть 2, Смирнов В.И., 2010.

   Фундаментальный учебник по высшей математике, переведенный на множество языков мира, отличается, с одной стороны, систематичностью и строгостью изложения, а с другой — простым языком, подробными пояснениями и многочисленными примерами.
Во второй части третьего тома рассматриваются основы теории функций комплексного переменного, конформное преобразование и плоское поле, применение теории вычетов, целые и дробные функции, аналитические функции многих переменных и функции матриц, линейные дифференциальные уравнения, специальные функции, приведение матриц к канонической форме.
В настоящем, 10-м, издании отмечена устаревшая терминология, сделаны некоторые замечания, связанные с методикой изложения материала, отличающейся от современной, исправлены опечатки.

Курс высшей математики, Том 3, Часть 2, Смирнов В.И., 2010


Формула Шварца.
Вышеуказанное приложение аналитических функций комплексного переменного к задачам гидродинамики и электростатики по существу было основано на той тесной связи, которая существует между гармоническими функциями и аналитическими функциями комплексного переменного. Мы указывали на эту связь уже раньше в [2].

Формулируем еще раз основные моменты этой связи: вещественная и мнимая части аналитической функции суть гармонические функции, и, наоборот, всякую гармоническую функцию можно рассматривать как вещественную часть некоторой аналитической функции, и при этом ее мнимая часть определяется с точностью до постоянного слагаемого, т. е. сама функция по вещественной части определяется с точностью до чисто мнимого постоянного слагаемого. Как мы упоминали раньше [II, 204], в случае ограниченной области гармоническая функция определяется единственным образом своими предельными значениями на контуре этой области (задача Дирихле). Таким образом, принимая во внимание сказанное выше, мы можем утверждать, что регулярная в некоторой области В с контуром l функция f(z) определяется с точностью до чисто мнимого постоянного слагаемого по заданным значениям ее вещественной части на контуре l. В общем случае любой области мы не имеем простой формулы, которая бы давала нам решение этой задачи, т. е. определяла бы регулярную функцию по заданным контурным значениям ее вещественной части. В случае круга такую формулу построить нетрудно, к чему мы сейчас и переходим.



Бесплатно скачать электронную книгу в удобном формате и читать:

Скачать книгу Курс высшей математики, Том 3, Часть 2, Смирнов В.И., 2010 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать




Скачать - djvu - Яндекс.Диск.
Дата публикации:





Теги: :: ::


 


 


Книги, учебники, обучение по разделам




Не нашёл? Найди:





2016-12-07 22:57:57