Линейная алгебра, Кряквин В.Д., 2004


Линейная алгебра, Кряквин В.Д., 2004.

  Учебное пособие содержит справочные сведения и примеры решения задач основных типов по разделам "Линейные и евклидовы пространства"и "Конечномерные линейные операторы в линейных и евклидовых пространствах"курсов «Линейная алгебра», «Алгебра», «Геометрия и алгебра» для вузов. Приведено значительное количество задач и упражнений для самостоятельного решения, которые могут быть использованы как для аудиторной работы, так и для индивидуальных заданий.
Для студентов и преподавателей вузов.

Линейная алгебра, Кряквин В.Д., 2004

ЛИНЕЙНЫЕ ОПЕРАТОРЫ.
Будем по-прежнему рассматривать числовые поля: поле действительных (вещественных) чисел К, поле комплексных чисел С и иногда, быть может, поле рациональных чисел Q. Буквой F будем обозначать одно из этих полей. Пусть V — линейное пространство над полем F. Будут использоваться следующие линейные пространства со стандартными операциями сложения векторов и умножения на число: Rn (Сn, Qn) — линейное пространство всех вектор-столбцов, состоящих из п вещественных (соответственно комплексных, рациональных) элементов, причем любое из этих пространств будет обозначаться Fn; Мп(F) — линейное пространство всех квадратных матриц порядка п с элементами из поля F; F[x] — линейное пространство всех многочленов с коэффициентами из поля F и от одной неизвестной х; F[х]n — подпространство всех многочленов степени не больше п линейного пространства F[х]; V3(O) (V2(O)) — линейное пространство всех векторов пространства (плоскости) с началом в начале координат.

Оглавление
Введение
1 Системы уравнений
Метод Гаусса
Матричные уравнения
Обратная матрица
Метод Г. Крамера
Задания  
2 Линейные пространства
Определение линейного пространства
Подпространство
Линейная комбинация  
Линейная независимость
Полные системы векторов
Размерность линейного пространства  
Базис линейного пространства  
Координаты вектора
Матрица перехода
Ранг и его приложения
Линейная оболочка
Фундаментальная система решений  
От линейной оболочки к подпространству решений
Сумма и пересечение подпространств
Задания  
3 Линейные операторы
Основные определения
Действия с линейными операторами
Матрица линейного оператора
Ядро и образ линейного оператора
Обратный оператор
Задания  
4 Спектральная теория
Собственные значения и собственные векторы
Диагональная матрица линейного оператора
Корневые подпространства  
Жорданова нормальная форма
Жорданов базис
Инвариантные подпространства
Минимальный многочлен  
Подобные матрицы
Задания  
5 Евклидовы пространства
Основные определения и факты
Ортогональность  
Ортогонализация
Ортогональное разложение  
Определитель Грама
Задания  
6 Линейные операторы в евклидовом пространстве
Самосопряженные операторы
Сопряженные и нормальные операторы
Ортогональные операторы
Антисамосопряженные операторы
Задания  
7 Квадратичные формы
Канонический вид
Знакоопределенность
Приведение к главным осям
Задания  
8 Ответы
9 Приложение
10 Ответы заданий приложения.



Бесплатно скачать электронную книгу в удобном формате и читать:

Скачать книгу Линейная алгебра, Кряквин В.Д., 2004 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать




Скачать книгу Линейная алгебра, Кряквин В.Д., 2004 - pdf - Яндекс.Диск.
Дата публикации:





Теги: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 


Книги, учебники, обучение по разделам




Не нашёл? Найди:





2016-12-05 22:57:43