Как вычислять пределы, Столярова З.Ф., Станевский А.Г., 2013


Как вычислять пределы, Столярова З.Ф., Станевский А.Г., 2013.

  В учебном пособии приведены теоретические сведения из введения в математический анализ, даны решения задач, предложены задачи для самостоятельного решения.
Для студентов 1-го курса, в первую очередь для студентов ГУИМЦ.

Как вычислять пределы, Столярова З.Ф., Станевский А.Г., 2013

Обратные и сложные функции.
Если уравнение у = f(x) может быть однозначно решено относительно переменной ж, то есть существует такая функция x = q(у), что у = f[q(y)], то функция ж = q(у) называется обратной по отношению к функции у = f(x). Функция у = f(x) является обратной по отношению к своей обратной функции x = g(у), то есть x = q[f(x)]. Итак, у = f(x) и x = q(y) — взаимно обратные функции.

Рассмотрим свойство графиков взаимно обратных функций.
Графики функций у = f(x) и x = q(у) совпадают (рис. 5). Если изменить обозначения переменных в записи обратной функции (аргумент обозначить буквой x, а функцию — буквой у), то графики взаимно обратных функций у = f(x) и x = q(у) будут симметричны относительно биссектрисы I и III координатных углов (рис. 6).

ОГЛАВЛЕНИЕ
Предисловие
Введение
Глава 1. Функции одной переменной. Основные определения и простейшие свойства
§1. Понятие функции
§2. Обратные и сложные функции
§3. Элементарные функции
Задачи к главе 1
Глава 2. Пределы
§1. Предел числовой последовательности
§2. Предел функции
§3. Теоремы о пределах
§4. Раскрытие неопредел¨eнностей элементарным способом.
§5. Признаки существования предела. Замечательные пределы
§6. Метод подстановки
§7. Сравнение бесконечно малых
§8. Свойства бесконечно малых.
Задачи к главе 2
Глава 3. Непрерывность и разрывы функций
§1. Непрерывность функций. Точки разрыва.
§2. Непрерывность функций в интервале, на отрезке
§3. Классификация точек разрыва
§4. Свойства функций, непрерывных на отрезке
Задачи к главе 3
Глава 4. Правило Лопиталя — Бернулли вычисления пределов
§1. Правило Лопиталя — Бернулли раскрытия неопределeнностей типа [0] и [∞]
§2. Логарифмирование для вычисления пределов с неопределeнностями [00], [∞0], [1∞]
Глава 5. Элементарное исследование свойств функций и построение их графиков
§1. Простейшие свойства функций
§2. Простейшие преобразования графиков функций
§3. Асимптоты графиков функций.
§4. Элементарное исследование свойств функций и построение их графиков
Задачи к главе 5
Ответы
Указания
Решения
Дополнение 1. Схема Горнера
Дополнение 2. Формулы сокращeнного умножения и деления
Дополнение 3. Тригонометрические соотношения.
Предметный указатель
Рекомендуемая литература.



Бесплатно скачать электронную книгу в удобном формате и читать:

Скачать книгу Как вычислять пределы, Столярова З.Ф., Станевский А.Г., 2013 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать




Скачать книгу Как вычислять пределы, Столярова З.Ф., Станевский А.Г., 2013 - pdf - Яндекс.Диск.
Дата публикации:





Теги: :: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 


Книги, учебники, обучение по разделам




Не нашёл? Найди:





2016-12-03 22:57:20