Методы оптимизации в примерах и задачах, Пантелеев А.В., Летова Т.А., 2005


Методы оптимизации в примерах и задачах, Пантелеев А.В., Летова Т.А., 2005.
 
  Рассмотрены аналитические методы решения задач поиска экстремума функций многих переменных на основе необходимых и достаточных условий. Изложены численные методы нулевого, первого и второго порядков решения задач безусловной минимизации, а также численные методы поиска условного экстремума. Описаны алгоритмы решения задач линейного программирования, целочисленного программирования, транспортных задач. Приведены методы решения задач поиска безусловного и условного экстремума функционалов на основе метода вариаций. В каждом разделе кратко изложены основные теоретические сведения, приведены решения типовых примеров и задачи для самостоятельного решения. Для студентов высших технических учебных заведений.

Методы оптимизации в примерах и задачах, Пантелеев А.В., Летова Т.А., 2005

МЕТОД КОНФИГУРАЦИЙ.
Метод конфигураций (метод Хука-Дживса [R.Hooke, Т.А. Jeeves]) представляет собой комбинацию исследующего поиска с циклическим изменением переменных и ускоряющего поиска по образцу. Исследующий поиск ориентирован на выявление локального поведения целевой функции и определение направления ее убывания вдоль "оврагов". Полученная информация используется при поиске по образцу при движении вдоль "оврагов" [4].

Исследующий поиск начинается в некоторой начальной точке х0, называемой старым базисом. В качестве множества направлений поиска выбирается множество координатных направлений. Задается величина шага, которая может быть различной для разных координатных направлений и переменной в процессе поиска. Фиксируется первое координатное направление и делается шаг в сторону увеличения соответствующей переменной. Если значение функции в пробной точке меньше значения функции в исходной точке, шаг считается удачным. В противном случае необходимо вернуться в предыдущую точку и сделать шаг в противоположном направлении с последующей проверкой поведения функции. После перебора всех координат исследующий поиск завершается. Полученная точка называется новым базисом (на рис. 5.12 в точке х0 произведен исследующий поиск и получена точка х1 - новый базис). Если исследующий поиск с данной величиной шага неудачен, то она уменьшается и процедура продолжается. Поиск заканчивается, когда текущая величина шага станет меньше некоторой величины.



Бесплатно скачать электронную книгу в удобном формате и читать:

Скачать книгу Методы оптимизации в примерах и задачах, Пантелеев А.В., Летова Т.А., 2005 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать




Скачать книгу Методы оптимизации в примерах и задачах, Пантелеев А.В., Летова Т.А., 2005 - pdf - Яндекс.Диск.
Дата публикации:





Теги: :: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 


Книги, учебники, обучение по разделам




Не нашёл? Найди:





2016-12-06 22:57:12