Алгебра и начала математического анализа, 11 класс, Книга для учителя, Потапов М.К., Шевкин А.В., 2009

Ссылки для скачивания файлов удалены по требованию правообладателя.
Download links removed by the request of the copyright holder.



Алгебра и начала математического анализа, 11 класс, Книга для учителя, Потапов М.К., Шевкин А.В., 2009.

    В книге рассмотрены концепция и структура учебника "Алгебра и начала математического анализа. 11 класс" авторов С.М.Никольского, М.К.Потапова, Н.Н.Решетникова, А.В.Шевкина, приведены 4 варианта примерного тематического планирования, даны методические рекомендации по изучению курса и комментарии к решению наиболее трудных задач, а также рекомендации по использованию дидактических материалов к данному учебнику (авторы: М.К.Потапов, А.В.Шевкин).
Книга предназначена учителям, работающим по учебнику "Алгебра и начала математического анализа. 11 класс" С.М.Никольского и др.

Алгебра и начала математического анализа, 11 класс, Книга для учителя, Потапов М.К., Шевкин А.В., 2009

Четность, нечетность, периодичность функций.
В данном пункте вводится понятие четности (нечетности) функции. Отметим, что учащимся в изучении этого свойства функций «мешает» предыдущий опыт. Они знают, что целые числа бывают двух типов — четные и нечетные, и часто полагают, что и функции бывают только четные и нечетные. Поэтому при введении понятий «четная функция» и «нечетная функция» нужно сразу сообщить, что существуют четные функции, нечетные функции, а также функции, которые не являются ни четными, ни нечетными, и функции, которые являются одновременно и четными, и нечетными. Соответствующие примеры приведены в учебнике и в дидактических материалах. Рассмотрим другие примеры.

Функция f (х) = 0 одновременно является и четной, и нечетной, так как ее можно записать в виде f (x) = 0 • х. Тогда для любого х верны равенства f (-x) = 0 • (-x) = = -0 • х = 0 • х, т. е. для любого х верны равенства f (-x) = = -f (x) и f (-х) = f (x).

Оглавление
Введение 3
О книге для учителя —
Концепция учебников серии «МГУ — школе» 4
О работе по учебнику и дидактическим материалам 5
Примерное тематическое планирование 8
Глава I. Функции. Производные. Интегралы 13
§ 1. Функции и их графики —
1.1. Элементарные функции —
1.2. Область определения и область изменения функции. Ограниченность функции 14
1.3. Четность, нечетность, периодичность функций 20
1.4. Промежутки возрастания, убывания, знакопостоянства и нули функции 29
1.5. Исследование функций и построение их графиков элементарными методами 31
1.6. Основные способы преобразования графиков 33
1.7*. Графики функций, содержащих модули 38
1.8*. Графики сложных функций —
§ 2. Предел функции и непрерывность 43
2.1. Понятие предела функции —
2.2. Односторонние пределы 44
2.3. Свойства пределов функций 48
2.4. Понятие непрерывности функции 50
2.5. Непрерывность элементарных функций 51
2.6*. Разрывные функции 52
§ 3. Обратные функции 54
3.1. Понятие обратной функции —
3.2*. Взаимно обратные функции —
3.3*. Обратные тригонометрические функции 58
3.4*. Примеры использования обратных тригонометрических функций 60
§ 4. Производная —
4.1. Понятие производной 61
4.2. Производная суммы. Производная разности 62
4.3*. Непрерывность функции, имеющей производную. Дифференциал —
4.4. Производная произведения. Производная частного 63
4.5. Производные элементарных функций 64
4.6. Производная сложной функции 66
4.7*. Производная обратной функции 68
§ 5. Применение производной 69
5.1. Максимум и минимум функции —
5.2. Уравнение касательной 75
5.3. Приближенные вычисления 79
5.4*. Теоремы о среднем 80
5.5. Возрастание и убывание функции 81
5.6. Производные высших порядков 83
5.7*. Выпуклость графика функции 84
5.8*. Экстремум функции с единственной критической точкой 85
5.9. Задачи на максимум и минимум 89
5.10*. Асимптоты. Дробно-линейная функция 95
5.11. Построение графиков функций с применением производных 98
5.12*. Формула и ряд Тейлора 101
§ 6. Первообразная и интеграл 102
6.1. Понятие первообразной —
6.2*. Замена переменной. Интегрирование по частям 104
6.3. Площадь криволинейной трапеции 106
6.4. Определенный интеграл 108
6.5*. Приближенное вычисление определенного интеграла 110
6.6. Формула Ньютона — Лейбница 111
6.7. Свойства определенного интеграла 114
6.8*. Применение определенных интегралов в геометрических и физических задачах 117
6.9*. Понятие дифференциального уравнения 119
6.10*. Задачи, приводящие к дифференциальным уравнениям 120
Глава II. Уравнения. Неравенства. Системы 122
§ 7. Равносильность уравнений и неравенств 123
7.1. Равносильные преобразования уравнений —
7.2. Равносильные преобразования неравенств 124
§ 8. Уравнения-следствия 128
8.1. Понятие уравнения-следствия —
8.2. Возведение уравнения в четную степень 130
8.3. Потенцирование логарифмических уравнений 133
8.4. Другие преобразования, приводящие к уравнению-следствию 134
8.5. Применение нескольких преобразований, приводящих к уравнению-следствию 137
§ 9. Равносильность уравнений и неравенств системам 141
9.1. Основные понятия —
9.2. Решение уравнений с помощью систем 142
9.3. Решение уравнений с помощью систем (продолжение) —
9.4*. Уравнения вида / (а (х)) = f ((3 (х)) 147
9.5. Решение неравенств с помощью систем 150
9.6. Решение неравенств с помощью систем (продолжение) —
9.7*. Неравенства вида / (а (х)) > f ((3 (х)) 153
§ 10. Равносильность уравнений на множествах 154
10.1. Основные понятия 155
10.2. Возведение уравнения в четную степень 156
10.3*. Умножение уравнения на функцию 158
10.4*. Другие преобразования уравнений 160
10.5*. Применение нескольких преобразований 165
10.6*. Уравнения с дополнительными условиями 168
§ 11. Равносильность неравенств на множествах 171
11.1. Основные понятия 172
11.2. Возведение неравенства в четную степень 173
11.3*. Умножение неравенства на функцию 174
11.4*. Другие преобразования неравенств 175
11.5*. Применение нескольких преобразований 176
11.6*. Неравенства с дополнительными условиями 180
11.7*. Нестрогие неравенства 183
§ 12. Метод промежутков для уравнений и неравенств 186
12.1. Уравнения с модулями —
12.2. Неравенства с модулями 190
12.3. Метод интервалов для непрерывных функций 193
§ 13*. Использование свойств функций при решении уравнений и неравенств 197
13.1*. Использование областей существования функций
13.2*. Использование неотрицательности функций 199
13.3*. Использование ограниченности функций 201
13.4*. Использование монотонности и экстремумов функций 204
13.5*. Использование свойств синуса и косинуса 208
§ 14. Системы уравнений с несколькими неизвестными 209
14.1. Равносильность систем —
14.2. Система-следствие 214
14.3. Метод замены неизвестных 216
14.4*. Рассуждения с числовыми значениями при решении систем уравнений 219
§ 15*. Уравнения, неравенства и системы с параметрами 228
15.1*. Уравнения с параметром 229
15.2*. Неравенства с параметром 230
15.3*. Системы уравнений с параметром 232
15.4*. Задачи с условиями 234
Глава III. Комплексные числа 246
§ 16*. Алгебраическая форма и геометрическая интерпретация комплексных чисел —
16.1*. Алгебраическая форма комплексного числа —
16.2*. Сопряженные комплексные числа 247
16.3*. Геометрическая интерпретация комплексного числа.
§ 17*. Тригонометрическая форма комплексных чисел 248
17.1*. Тригонометрическая форма комплексного числа
17.2*. Корни из комплексных чисел и их свойства 252
§ 18*. Корни многочленов. Показательная форма комплексных чисел 253
18.1*. Корни многочленов —
18.2*. Показательная форма комплексного числа.

Купить книгу Алгебра и начала математического анализа, 11 класс, Книга для учителя, Потапов М.К., Шевкин А.В., 2009 - Яндекс Народ Диск.

Купить книгу Алгебра и начала математического анализа, 11 класс, Книга для учителя, Потапов М.К., Шевкин А.В., 2009 - depositfiles.
Дата публикации:






Теги: :: :: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 


Книги, учебники, обучение по разделам




Не нашёл? Найди:





2016-12-01 23:00:33