Асимптотика, Интегралы и ряды, Федорюк М.В., 1987


Асимптотика, Интегралы и ряды, Федорюк М.В., 1987.

    В книге приведены основные методы вычисления асимптотики интегралов, сумм и рядов. Рассмотрен ряд приложений к задачам механики и физики. Для математиков, механиков, физиков, инженеров, а также для студентов и аспирантов университетов и инженерно-физических ВУЗов.

Асимптотика, Интегралы и ряды, Федорюк М.В., 1987

Метод перевала.
Вещественным полуалгебраическим множеством называется объединение конечного числа стратов. Класс вещественных полуалгебраических множеств замкнут относительно всех теоретико-множественных операций.

Теорема Зайденберга — Тарского. Образ вещественного полуалгебраического множества при вещественном алгебраическом отображении является вещественным полуалгебраическим множеством,
Размерность вещественного полуалгебраического множества V можно определить, например, как максимум размерностей шаров, которые можно поместить в V.

Оглавление
Предисловие
Глава I. Асимптотические разложения

§ 1.Простейшие асимптотические оценки
§ 2. Асимптотические ряды
§ 3. Степенные асимптотические ряды
§ 4. Интегралы со слабой особенностью
§ 5. Корни трансцендентных уравнений
Глава II. Метод Лапласа
§ 1. Интегралы Лапласа (одномерный случай)
§ 2. Модификации метода Лапласа (одномерный случай)
§ 3. Некоторые сведения из анализа
§ 4. Метод Лапласа для кратных интегралов
§ 5. Логарифмические асимптотики
§ 6. Некоторые применения теории вычетов
§ 7. Двумерное преобразование Лапласа
Глава III. Метод стационарной фазы
§ 1. Метод стационарной фазы в одномерном случае
§ 2. Метод стационарной фазы в многомерном случае. Вклад от внутренней невырожденной стационарной точки
§ 3. Применения многомерного метода стационарной фазы
§ 4. Метод стационарной фазы. Вклад от граничных стационарных точек
§ 5. Вырожденные стационарные точки
§ 6. Особенности интегралов от быстро осциллирующих функций
§ 7. Асимптотика преобразования Бесселя
§ 8. Асимптотика преобразований Фурье обобщенных функций
Глава IV. Метод перевала (одномерный случай). Суммы и ряды
§ 1. Метод перевала для интегралов Лапласа
§ 2. Теоремы существования
§ 3. Функция Эйри
§ 4. Функции Бесселя
§ 5. Асимптотика коэффициентов Тейлора, Лорана-Фурье аналитических функций. Некоторые задачи теории вероятностей, статистической физики и теории чисел
§ 6. Асимптотика преобразования Лапласа
§ 7. Асимптотика преобразования Фурье
§ 8. Асимптотика преобразования Меллина
§ 9. Точка перевала на бесконечности
§ 10. Метод контурного интегрирования Лапласа
§ 11. Асимптотика сумм, рядов и бесконечных произведений
Глава V. Метод перевала (многомерный случай)
§ 1. Основы метода перевала
§ 2. Точки перевала полиномов и алгебраических функций. Теоремы существования
§ 3. Асимптотика фундаментальных решений корректных по Петровскому уравнений
§ 4. Устойчивость в С задачи Коши для разностных уравнений и уравнений с частными производными
§ 5. Асимптотика некоторых коэффициентов ряда Фурье по сферическим гармоникам
Глава VI. Слияние особенностей
§ 1. Стационарная точка вблизи границы
§ 2. Слияние двух точек перевала
§ 3. Слияние полюса и точки перевала
§ 4. Слияние нескольких точек перевала
Список литературы.



Бесплатно скачать электронную книгу в удобном формате и читать:

Скачать книгу Асимптотика, Интегралы и ряды, Федорюк М.В., 1987 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать




Скачать книгу Асимптотика, Интегралы и ряды, Федорюк М.В., 1987 - Яндекс Народ Диск.

Скачать книгу Асимптотика, Интегралы и ряды, Федорюк М.В., 1987 - depositfiles.
Дата публикации:





Теги: :: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 


Книги, учебники, обучение по разделам




Не нашёл? Найди:





2016-12-02 23:30:05