Задачи на максимум и минимум, Актершев С.П., 2004


Задачи на максимум и минимум, Актершев С.П., 2004.

   Рассмотрены разнообразные задачи элементарной математики, связанные с поиском экстремальных значений функции или выбором наилучшего (оптимального) решения при заданных ограничениях (наименьшая стоимость, кратчайший путь и т.п.). Большое внимание уделено геометрическим задачам "на экстремум" и задачам с параметром, взаимосвязи различных разделов математики, связи ее с другими науками и роли этой науки в повседневной практической деятельности людей. Все задачи приведены с подробным решением, часть задач сопровождается двумя или тремя решениями. В конце каждого раздела дана подборка задач для самостоятельной работы.
Для учащихся и преподавателей общеобразовательных и специализированных школ, лицеев, колледжей и для самообразования.

Задачи на максимум и минимум, Актершев С.П., 2004

   Среди различных математических задач встречаются задачи, в которых требуется найти наилучший вариант, кратчайший путь, наибольшее число с заданными свойствами и т. п. Подобные задачи обладают своеобразной привлекательностью. По-видимому, это объясняется тем, что они чем-то похожи на наши повседневные проблемы. Мы стараемся приобрести веши наилучшего качества по возможности за наименьшую цену; пытаемся максимально увеличить свои доходы, прилагая к этому минимальные усилия; хотим поменьше рисковать и т. д. У всех этих жизненных проблем есть одно общее свойство: необходимо добиться наилучшего результата, выполнив определенные условия. В математике таким проблемам соответствует целый класс задач, в которых при заданных ограничениях нужно отыскать наибольшее (максимальное) или наименьшее (минимальное) значение некоторой функции. Оба понятия — максимум и минимум — объединяются одним термином "экстремум".

Содержание
Предисловие 1
Глава 1. Выбор наилучшего варианта 3
1.1. О математических моделях, постановке задачи и других "скучных" вопросах 3
1.2. Метод перебора 16
1.3. Когда экстремум найти нетрудно 30
Глава 2. Экстремум находим без помощи производной 45
2.1. Наилучшее — это то, что невозможно улучшить 46
2.2. Применение неравенств для поиска экстремумов 59
2.3. Вариации на тему неравенств 72
Глава 3. О том, как с помощью гирек построить кратчайшую транспортную сеть, и о том, как можно растянуть бычью шкуру 87
3.1. Экстремум в геометрических задачах 87
3.2. Минимум энергии, сумма длин и "оптические" свойства экстремумов 103
3.3. Задача Дидоны и родственные ей задачи 119
Глава 4. Где быть экстремуму — диктует параметр 131
4.1. Исследуем все возможности 131
4.2. Сколько корней имеет уравнение? 153
4.3. Когда без производной не обойтись 165
Список литературы 187



Бесплатно скачать электронную книгу в удобном формате и читать:

Скачать книгу Задачи на максимум и минимум, Актершев С.П., 2004 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать




Скачать книгу Задачи на максимум и минимум, Актершев С.П., 2004 - Яндекс Народ Диск.

Скачать книгу Задачи на максимум и минимум, Актершев С.П., 2004 - depositfiles.
Дата публикации:





Теги: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 


Книги, учебники, обучение по разделам




Не нашёл? Найди:





2016-12-05 09:08:27