Методика обучения учащихся доказательству математических предложений. Далингер В.А. 2006


Название: Методика обучения учащихся доказательству математических предложений.

Автор: Далингер В.А.
2006

   В книге рассмотрены как теоретические, так и практические основы обучения учащихся доказательству математических предложений.
Раскрыт категориально-понятийный аппарат, относящийся к понятию "теорема", показаны ее различные виды, общие и частные методы доказательства. Детально описана пропедевтическая работа по обучению учащихся доказательству теорем; показана работа учителя по подготовке к уроку, на котором будет основываться теорема; рассмотрен вопрос об организации деятельности учащихся по "переоткрытию" формулировки теоремы и поиску способов и методов ее доказательства; описаны различные приемы закрепления теоремы.
Книга предназначена для учителей математики общеобразовательных учреждений, а также студентов физико-математических факультетов педВУЗов.

Методика обучения учащихся доказательству математических предложений. Далингер В.А. 2006

   Читатель имеет обыкновение при чтении книги пропускать различного рода предисловия и введения, но вряд ли это целесообразно, ибо он упускает возможность установить с автором первоначальный контакт. Во введении актуализированы те проблемы, которые явно или косвенно связаны с методикой формирования у учащихся умения доказывать теоремы, и тем самым даны общие ориентиры для учителя. Пытливый ум, воображение и педагогический опыт читателя помогут ему сделать эти ориентиры базовыми идеями в совершенствовании процесса обучения математике вообще и в обучении учащихся доказательству теорем в частности.
Автор надеется, что предлагаемая работа в какой-то степени удовлетворит запросы учителей, даст им возможность руководствоваться в своей практике интенсивной методикой.
Почему одни ученики довольно легко справляются с решением задач, доказательством теорем, другие — назубок знают теорию, но не могут ее применять на практике, третьи — проявляют полную беспомощность во всем? И недоумевает учитель: «Бьюсь, бьюсь, стараюсь — и никакого результата». Знакомая ситуация, не правда ли? В чем дело? Неужели только в способностях учеников, слабой базе их знаний или несовершенных учебных программах и учебниках?
Думается, не только в этом. В значительной степени все зависит от используемой учителем технологии обучения. До настоящего времени школьное обучение нацеливалось главным образом на усвоение знаний, на овладение умениями и навыками, а не на развитие учащихся. Это явилось следствием традиционного информационно-объяснительного подхода к построению содержания образования, когда большой удельный вес знаний дается учителем в готовом виде, без опоры на самостоятельную работу учащихся.

ОГЛАВЛЕНИЕ
Введение 3
ГЛАВА I
Теорема, ее виды и методы доказательства 8

§ 1. Понятие теоремы —
§ 2. Методы доказательства теорем 14
2.1. Частные методы доказательства 20
2.2. Общие методы доказательства 31
ГЛАВА II
Пропедевтика обучения учащихся доказательству теорем 42

§ 1. Формирование у учащихся умения подмечать закономерности 43
§ 2. Воспитание у учащихся понимания необходимости доказательства 62
§ 3. Обучение учащихся умению выделять условие и заключение в математических утверждениях 66
§ 4. Ознакомление учащихся с простыми и сложными высказываниями и значениями их истинности —
§ 5. Ознакомление школьников с понятием отрицания высказываний и с понятием противоречивых высказываний 69
§ 6. Обучение учащихся умению выделять различные конфигурации на одном и том же чертеже 71
§ 7. Обучение учащихся умению пользоваться контрпримерами 74
§ 8. Обучение учащихся умению выполнять геометрические чертежи и читать их 76
§ 9. Формирование у учащихся умения выводить следствия из заданных условий 91
§ 10. Формирование у учащихся умения проводить доказательные рассуждения, делать выводы 95
ГЛАВА III
Подготовка учителя к доказательству теорем на уроке 111

§ 1. Анализ формулировки теоремы и выяснение ее значения в системе других теорем 113
§ 2. Построение аналитических рассуждений, облегчающих понимание доказательства теоремы 115
§ 3. Определение ведущего метода доказательства, исследование особенностей доказательства 117
§ 4. Исследование математических ситуаций, возникающих при доказательстве 118
§ 5. Поиск других методов и способов доказательства теоремы 121
§ 6. Определение рациональной записи доказательства теоремы 130
§ 7. Подбор задач, решение которых облегчит доказательство теоремы 131
§ 8. Подбор задач, закрепляющих доказываемую теорему 133
§ 9. Подбор материала для внеклассной работы, связанного с изученной теоремой 137
ГЛАВА IV
Методика работы над формулировкой, доказательством и закреплением теоремы 151

§ 1. Усвоение учащимися формулировки теоремы —
§ 2. Методика проведения учебных исследований для самостоятельного открытия учащимися математических фактов 169
§ 3. Обеспечение усвоения учащимися доказательства теоремы 194
§ 4. Разработка методики обучения доказательству теорем, основанной на когнитивно-визуальном подходе 198
§ 5. Закрепление формулировки теоремы и ее доказательства 213
Литература 250



Бесплатно скачать электронную книгу в удобном формате и читать:

Скачать книгу Методика обучения учащихся доказательству математических предложений. Далингер В.А. 2006 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать




Скачать книгу Методика обучения учащихся доказательству математических предложений. Далингер В.А. 2006 - depositfiles

Скачать книгу Методика обучения учащихся доказательству математических предложений. Далингер В.А. 2006 - letitbit
Дата публикации:





Теги: :: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 


Книги, учебники, обучение по разделам




Не нашёл? Найди:





2016-12-03 23:00:11