Краткий курс математического анализа - Том 2 - Дифференциальное и интегральное исчисления функций многих переменных - Гармонический анализ - Кудрявцев Л.Д.


Название: Краткий курс математического анализа - Том 2 - Дифференциальное и интегральное исчисления функций многих переменных - Гармонический анализ. 2005.

Автор: Кудрявцев Л.Д.

    Во втором томе излагаются традиционные разделы математического анализа: дифференциальное и интегральное исчисления функций многих переменных, гармонический анализ. В конце тома помещен краткий исторический очерк развития понятий математического анализа. Нумерация параграфов и рисунков продолжает нумерацию первого тома.

Краткий курс математического анализа - Том 2 - Кудрявцев Л.Д.



Том 2.  ОГЛАВЛЕНИЕ
ГЛАВА 4
ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ
§ 33. Многомерные пространства 7
33.1. Определение n-мерного пространства (7). 33.2. Сходимость последовательностей точек в n-мерном пространстве (12). 33.3. Различные типы множеств (20). 33.4. Компакты (27).
§ 34. Предел и непрерывность отображений 34
34.1. Функции многих переменных (34). 34.2 Предел отображений (35). 34.3. Непрерывность отображений в точке (39). 34.4. Свойства пределов отображений (41). 34.5. Предел и непрерывность композиции отображений (42). 34.6. Повторные пределы (44).
§ 35. Непрерывные отображения множеств 45
35.1. Непрерывные отображения компактов. Равномерная непрерывность отображений (45). 35.2. Непрерывное отображение линейно связных множеств (48). 35.3. Непрерывные отображения: общие свойства (50).
§ 36. Частные производные. Дифференцируемость функций многих переменных 52
36.1. Частные производные (52). 36.2. Дифференцируемость функций многих переменных (53). 36.3. Дифференцирование сложной функции (61). 36.4. Инвариантность формы первого дифференциала (63). 36.5. Геометрический смысл частных производных и дифференциала (64). 36.6. Производная по направлению. Градиент (66).
§ 37. Частные производные и дифференциалы высших порядков .... 69 37.1 Частные производные высших порядков (69). 37.2. Дифференциалы высших порядков (71).
§ 38. Формула Тейлора для функций многих переменных 72
38.1. Формула Тейлора для функций двух переменных (72). 38.2. Формула Тейлора для функций любого числа переменных (75).
§ 39. Экстремумы функций многих переменных 78
39.1. Необходимые условия экстремума (78). 39.2. Достаточные условия экстремума (79).
§ 40. Неявные функции. Отображения 85
40.1. Неявные функции задаваемые одним уравнением (85). 40.2. Декартово произведение множеств (92). 40.3. Неявные функции, задаваемые системой уравнений (93). 40.4. Свойства якобианов отображений (97). 40.5. Непрерывно дифференцируемые отображения (98).
§41. Условный экстремум 103
41.1. Прямой метод отыскания точек условного экстремума (103). 41.2. Метод неопределенных множителей Лагранжа (105). 41.3. Достаточные условия для условного экстремума (107).
ГЛАВА 5
ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ
§42. Кратные интегралы 112
42.1. Объем (мера) в n-мерном пространстве (112). 42.2. Множества меры нуль (128). 42.3. Разбиение измеримых множеств (131). 42.4. Интегральные суммы. Определение кратного интеграла (134). 42.5. Неполные интегральные суммы (136). 42.6. Существование кратного интеграла (139). 42.7. Свойства кратных интегралов (141)
§ 43. Сведение кратного интеграла к повторному 148
43.1. Сведение двойного интеграла к повторному (148). 43.2. Сведение интеграла произвольной кратности к повторному (153). 43.3. Объем n-мерного шара (155). 43.4. Независимость меры от выбора системы координат (156). 43.5*. Формулы Ньютона-Лейбница и Тейлора (158).
§ 44. Замена переменных в кратных интегралах 161
44.1. Линейные отображения (161). 44.2. Дифференцируемые отображения (165). 44.3 Формула замены переменного в кратном интеграле (174). 44.4 Геометрический смысл абсолютной величины якобиана отображения (181). 44.5. Криволинейные координаты. (182).
§ 45. Криволинейные интегралы 186
45.1. Криволинейный интеграл первого рода (186). 45.2. Криволинейный интеграл второго рода (188). 45.3*. Интеграл Стилтьеса (193). 45.4*. Обобщение понятия криволинейного интеграла второго рода (202). 45.5. Формула Грина (205). 45.6. Формула для площадей (210). 45.7. Геометрический смысл знака якобиана отображения плоской области (211).
§ 46. Элементы теории поверхностей 214
46.1. Основные определения (214). 46.2. Касательная плоскость и нормаль к поверхности (218). 46.3. Первая квадратичная форма поверхности (221). 46.4. Длина кривых на поверхности (222). 46.5. Площадь поверхности (223). 46.6. Ориентация поверхности (225).
§ 47. Поверхностные интегралы 228
47.1. Определения поверхностных интегралов (228). 47.2. Формулы для представления поверхностного интеграла второго рода в виде двойного интеграла (231). 47.3. Некоторые специальные случаи поверхностных интегралов второго рода (232).
§ 48. Скалярные и векторные поля 235
48.1. Основные понятия (235). 48.2. Формула Гаусса-Остроградского (238). 48.3. Геометрическое определение дивергенции (241). 48.4. Формула Стокса (242). 48.5. Геометрическое определение вихря (246). 48.6. Соленоидальные векторные поля (247). 48.7. Потенциальные векторные поля (249).
§ 49. Интегралы, зависящие от параметра 254
49.1. Равномерная сходимость по параметру семейства функций (254). 49.2. Свойства интегралов, зависящих от параметра (257).
§ 50. Несобственные интегралы, зависящие от параметра 261
50.1. Равномерно сходящиеся интегралы (261). 50.2. Свойства несобственных интегралов, зависящих от параметра (267). 50.3. Интегралы Эйлера (270). 50.4*. Интеграл Дирихле (271).
ГЛАВА 6

ГАРМОНИЧЕСКИЙ АНАЛИЗ
§51. Тригонометрические ряды Фурье 274
51.1. Основные понятия (274). 51.2. Приближение функций ступенчатыми функциями (277). 51.3. Теорема Римана. Стремление коэффициентов Фурье к нулю (281). 51.4. Интеграл Дирихле. Принцип локализации (283). 51.5. Сходимость ряда Фурье в точке (287). 51.6. Суммирование рядов Фурье методом средних арифметических (292). 51.7. Приближение непрерывных функций многочленами (296).

§ 52. Функциональные пространства 299

52.1. Метрические пространства (299). 52.2. Линейные пространства (309). 52.3. Нормированные и полунормированные пространства (310). 52.4. Гильбертовы пространства (317). 52.5. Фактор-пространства (327). 52.6. Пространство Li (331). 52.7. Пространство L\ (339).
§ 53. Ряды Фурье в гильбертовых пространствах 341
53.1. Ортогональные системы (341). 53.2. Полные системы (345). 53.3. Ряды Фурье (349). 53.4. Дифференцирование тригонометрических рядов Фурье и порядок убывания их коэффициентов (360). 53.5. Скорость сходимости тригонометрических рядов (362). 53.6*. Ряды Фурье функций с произвольным периодом (364). 53.7*. Запись рядов Фурье в комплексной форме (365).
§ 54. Интеграл Фурье и преобразование Фурье 366
54.1. Представление функций интегралом Фурье (366). 54.2. Главное значение интеграла (372). 54.3. Преобразование Фурье (373). 54.4. Свойства преобразования Фурье абсолютно интегрируемых функций (377).
§ 55. Обобщенные функции 381
55.1. Пространства D и D' (381). 55.2. Дифференцирование обобщенных функций (385). 55.3. Пространство S (388). 55.4. Преобразование Фурье обобщенных функций (391).
Краткий очерк развития математического анализа 396
Предметный указатель 420



Бесплатно скачать электронную книгу в удобном формате и читать:

Скачать книгу Краткий курс математического анализа - Том 2 - Дифференциальное и интегральное исчисления функций многих переменных - Гармонический анализ - Кудрявцев Л.Д. - fileskachat.com, быстрое и бесплатное скачивание.

Скачать




Скачать книгу  Краткий курс математического анализа - Том 2 - Дифференциальное и интегральное исчисления функций многих переменных - Гармонический анализ - Кудрявцев Л.Д. - depositfiles

Скачать книгу  Краткий курс математического анализа - Том 2 - Дифференциальное и интегральное исчисления функций многих переменных - Гармонический анализ - Кудрявцев Л.Д. - letitbit

Дата публикации:





Теги: :: :: :: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 


Книги, учебники, обучение по разделам




Не нашёл? Найди:





2016-12-07 22:56:01