Курс высшей алгебры - Учебник - Курош А.Г. - 1968


Курс высшей алгебры - Учебник - Курош А.Г. - 1968

Книга  обеспечивает весь обязательный университетский курс высшей алгебры, а не только его первые два семестра. В книгу включено несколько новых глав. Одна из них посвящена основам теории групп, а остальные относятся к линейной алгебре - теория линейных пространств, теория евклидовых пространств  и жордановой нормальной формы матрицы.

Студентам будет удобно иметь весь обязательный материал собранным в одном учебнике и изложенным единым  стилем.



Бесплатно скачать электронную книгу в удобном формате и читать:

Скачать книгу Курс высшей алгебры - Учебник - Курош А.Г. - 1968 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать




Скачать книгу  Курс высшей алгебры - Учебник - Курош А.Г. - 1968

ОГЛАВЛЕНИЕ

Предисловие к шестому изданию
Введение

Глава первая. Системы линейных уравнений. Определители     
§   1. Метод последовательного исключения неизвестных     
§   2. Определители второго и третьего порядков
§   3. Перестановки и подстановки
§   4. Определители n-го порядка
§   5. Миноры и их алгебраические дополнения
§   6. Вычисление определителей
§   7. Правило Крамера     

Глава вторая. Системы линейных уравнений (общая теория)
§   8. n-мерное векторное пространство   
§   9. Линейная зависимость векторов     
§ 10. Ранг матрицы     
§ 11. Системы линейных уравнений    
§ 12. Системы линейных однородных уравнений     

Глава третья. Алгебра матриц
§ 13. Умножение матрац
§ 14. Обратная матрица
§ 15. Сложение матриц и умножение матрицы на число     
§ 16. Аксиоматическое построение теории определителей

Глава четвертая. Комплексные числа
§ 17. Система комплексных чисел
§ 18. Дальнейшее изучение комплексных чисел
§ 19. Извлечение корня из комплексных чисел

Глава пятая. Многочлены и их корни    
§ 20. Операции над многочленами
§ 21. Делители. Наибольший общий делитель     
§ 22. Корни многочленов
§ 23. Основная теорема
§ 24. Следствия из основной теоремы      
§ 25. Рациональные дроби

Глава шестая. Квадратичные формы
§ 26. Приведение квадратичной формы к каноническому виду     
§ 27. Закон инерции  
§ 28. Положительно определенные формы

Глава седьмая. Линейные пространства    
§ 29. Определение линейного пространства.  Изоморфизм
§ 30. Конечномерные пространства. Базы
§ 31. Линейные преобразования     
§ 32. Линейные подпространства     
§ 33. Характеристические корни и собственные значения

Глава восьмая. Евклидовы пространства    
§ 34. Определение евклидова пространства. Ортонормированные базы
§ 35. Ортогональные матрицы, ортогональные преобразования   
§ 36. Симметрические преобразования
§ 37. Приведение квадратичной формы к главным осям. Пары форм

Глава девятая. Вычисление корней многочленов     
§ 38. Уравнения второй, третьей и четвертой степени   
§ 39. Границы корней    
§ 40. Теорема Штурма
§ 41. Другие теоремы о числе действительных корней
§ 42. Приближенное вычисление корней     

Глава десятая. Поля и многочлены
§ 43. Числовые кольца и поля  
§ 44. Кольцо
§ 45. Поле
§ 46. Изоморфизм колец (полей). Единственность поля комплексных чисел     
§ 47. Линейная  алгебра   и алгебра многочлена над произвольным полем
§ 48. Разложение многочленов на неприводимые множители    
§ 49. Теорема существования корня
§ 50. Поле рациональных дробей  

Глава одиннадцатая. Многочлены от нескольких неизвестных
§ 51. Кольцо многочленов от нескольких неизвестных
§ 52. Симметрические многочлены
§ 53. Дополнительные замечания о симметрических многочленах     
§ 54. Результант. Исключение неизвестного. Дискриминант   
§ 55. Второе доказательство основной теоремы   алгебры комплексных чисел

Глава двенадцатая. Многочлены с рациональными коэффициентами   
§ 56. Приводимость многочленов над полем рациональных чисел    
§ 57. Рациональные корни целочисленных многочленов
§ 58. Алгебраические числа   

Глава тринадцатая. Нормальная форма матрицы
§ 59. Эквивалентность матриц
§ 60. Унимодулярные λ-матрицы. Связь  подобия  числовых матриц с эквивалентностью их характеристических матриц    
§ 61. Жорданова нормальная форма
§ 62. Минимальный многочлен

Глава четырнадцатая. Группы
§ 63. Определение и примеры групп
§ 64. Подгруппы
§ 65. Нормальные делители, фактор-группы, гомоморфизмы   
§ 66. Прямые суммы абелевых групп
§ 67. Конечные абелевы группы

Указатель литературы    
Предметный указатель

Скачать книгу  Курс высшей алгебры - Учебник - Курош А.Г. - 1968
Дата публикации:





Теги: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 


Книги, учебники, обучение по разделам




Не нашёл? Найди:





2016-12-02 22:56:00